Muutke küpsiste eelistusi

E-raamat: Metaheuristic Algorithms and Neural Networks in Hydrology

Edited by , Edited by
  • Formaat: 230 pages
  • Ilmumisaeg: 28-Aug-2024
  • Kirjastus: Cambridge Scholars Publishing
  • ISBN-13: 9781036408053
  • Formaat - PDF+DRM
  • Hind: 137,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 230 pages
  • Ilmumisaeg: 28-Aug-2024
  • Kirjastus: Cambridge Scholars Publishing
  • ISBN-13: 9781036408053

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book summarizes the latest research and developments related to the application of nature-inspired metaheuristic algorithms coupled with artificial neural networks (ANNs) in hydrology. The book covers the theoretical foundations, models and methods, structure, frameworks and analysis of applying novel ANNs in hydrology. It starts with the introduction of ANNs as a black box model, followed by the coupling of various metaheuristic algorithms with ANNs to form novel neural network models for solving real-world problems in hydrology, including Particle Swarm Optimization (PSO) for rainfall-runoff modeling, Bat Optimization (Bat) and Cuckoo Search Optimization (CSO) for future rainfall prediction, the Whale Optimization Algorithm (WOA) and Salp Swarm Optimization (SSO) for future water level prediction, Grey Wolf Optimization (GWO), Multi-Verse Optimization (MVO), the Sine Cosine Algorithm (SCA) and the Hybrid Sine Cosine and Fitness Dependent Optimizer (SC-FDO) for imputing missing rainfall data.
Associate Professor Kuok King Kuok earned his PhD from Universiti Teknologi Malaysia in 2010. Dr Kuok has contributed significantly to the scholarly landscape, authoring over 130 articles. Dr Kuok's diverse research portfolio spans critical areas, including flood forecasting, imputing missing data, filter membrane development, climate change impacts, low-impact development, sustainable water supply, building information modeling, and project management. Md Rezaur Rahman is Senior Lecturer and Associate Professor in the Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Malaysia. He received his PhD from the University Malaysia Sarawak, Malaysia. He has more than 12 years of experience in teaching, research, and working with industry. So far, he has published 8 books and 20 book chapters, and more than 167 international journal papers. He is also listed as a World's Top 2% Scientist by Stanford University, USA.