Preface |
|
xiii | |
Acknowledgements |
|
xv | |
Supplementary files |
|
xvi | |
1 Overview of metaheuristic optimization |
|
1 | (38) |
|
|
1 | (1) |
|
1.2 Description of metaheuristics |
|
|
2 | (2) |
|
1.3 Principle of population-based metaheuristics |
|
|
4 | (27) |
|
|
6 | (1) |
|
1.3.2 Differential evolution |
|
|
7 | (1) |
|
1.3.3 Evolutionary programing |
|
|
7 | (1) |
|
1.3.4 Backtracking search optimization algorithm |
|
|
8 | (1) |
|
1.3.5 Particle swarm optimization |
|
|
9 | (1) |
|
1.3.6 Ant colony optimization |
|
|
9 | (1) |
|
1.3.7 Artificial bee colony |
|
|
9 | (1) |
|
1.3.8 Gravitational search algorithm |
|
|
10 | (1) |
|
1.3.9 Wind-driven optimization |
|
|
11 | (1) |
|
1.3.10 Colliding bodies optimization |
|
|
12 | (1) |
|
1.3.11 Black hole algorithm |
|
|
13 | (1) |
|
1.3.12 Gray wolf optimizer |
|
|
14 | (1) |
|
|
14 | (1) |
|
1.3.14 Cuckoo search algorithm |
|
|
15 | (1) |
|
1.3.15 Moth swarm algorithm |
|
|
15 | (1) |
|
1.3.16 Krill herd algorithm |
|
|
16 | (1) |
|
1.3.17 Shuffled frog-leaping algorithm |
|
|
17 | (1) |
|
1.3.18 Bacterial colony foraging optimization |
|
|
17 | (1) |
|
1.3.19 Biogeography-based optimization |
|
|
18 | (1) |
|
1.3.20 Teaching-learning-based optimization |
|
|
19 | (1) |
|
1.3.21 League championship algorithm |
|
|
19 | (1) |
|
1.3.22 Mine blast algorithm |
|
|
20 | (1) |
|
1.3.23 Sine cosine algorithm |
|
|
21 | (1) |
|
|
22 | (1) |
|
1.3.25 Imperialist competitive algorithm |
|
|
23 | (1) |
|
1.3.26 Differential search algorithm |
|
|
24 | (1) |
|
1.3.27 Glowworm swarm optimization |
|
|
25 | (1) |
|
1.3.28 Spiral optimization algorithm |
|
|
26 | (1) |
|
1.3.29 The Jaya algorithm |
|
|
27 | (1) |
|
1.3.30 Creating a "new" algorithm |
|
|
28 | (3) |
|
1.4 Criticism of metaheuristics |
|
|
31 | (2) |
|
1.5 Educational software-metahopt |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (4) |
2 Overview of genetic algorithms |
|
39 | (36) |
|
|
39 | (1) |
|
2.2 Basic structure of the GA |
|
|
40 | (1) |
|
2.3 Representation of individuals (encoding) |
|
|
41 | (3) |
|
|
42 | (1) |
|
|
43 | (1) |
|
2.3.3 Real-value encoding |
|
|
43 | (1) |
|
2.4 Population size and initial population |
|
|
44 | (1) |
|
|
44 | (2) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (4) |
|
|
48 | (1) |
|
2.6.2 Stochastic universal sampling |
|
|
48 | (1) |
|
2.6.3 Linear ranking selection |
|
|
49 | (1) |
|
|
49 | (1) |
|
2.6.5 k-Tournament selection schemes |
|
|
50 | (1) |
|
2.6.6 Simple tournament selection |
|
|
50 | (1) |
|
|
50 | (3) |
|
2.7.1 One-point crossover |
|
|
51 | (1) |
|
2.7.2 Multipoint crossover |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
2.7.5 Arithmetic crossover |
|
|
52 | (1) |
|
2.7.6 Heuristic crossover |
|
|
53 | (1) |
|
|
53 | (1) |
|
2.9 GA control parameters |
|
|
54 | (1) |
|
2.10 Multiobjective optimization using GA |
|
|
55 | (2) |
|
2.11 Applications of GA to power system problems-literature overview |
|
|
57 | (9) |
|
2.11.1 Optimal power flow |
|
|
57 | (3) |
|
2.11.2 Optimal reactive power dispatch |
|
|
60 | (1) |
|
2.11.3 Combined economic and emission dispatch |
|
|
60 | (1) |
|
2.11.4 Optimal power flow in distribution networks |
|
|
61 | (2) |
|
2.11.5 Optimal placement and sizing of distributed generation in distribution networks |
|
|
63 | (1) |
|
2.11.6 Optimal energy and operation management of microgrids |
|
|
64 | (1) |
|
2.11.7 Optimal coordination of directional overcurrent relays |
|
|
65 | (1) |
|
2.11.8 Steady-state analysis of self-excited induction generator |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (8) |
3 Overview of particle swarm optimization |
|
75 | (38) |
|
|
75 | (1) |
|
|
76 | (12) |
|
|
79 | (3) |
|
3.2.2 General remarks about PSO |
|
|
82 | (1) |
|
3.2.3 MATLAB® code of PSO |
|
|
83 | (2) |
|
3.2.4 Example usage of PSO |
|
|
85 | (3) |
|
|
88 | (6) |
|
3.3.1 Population topology |
|
|
88 | (1) |
|
3.3.2 Discrete binary PSO |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
90 | (4) |
|
3.4 Applications of PSO to power system problems-literature overview |
|
|
94 | (8) |
|
|
94 | (3) |
|
3.4.2 Optimal reactive power dispatch |
|
|
97 | (1) |
|
|
98 | (1) |
|
3.4.4 Optimal power flow in distribution networks |
|
|
99 | (1) |
|
3.4.5 Optimal placement and sizing of distributed generation in distribution networks |
|
|
100 | (1) |
|
3.4.6 Optimal energy and operation management of MGs |
|
|
101 | (1) |
|
3.4.7 Optimal coordination of directional overcurrent relays |
|
|
101 | (1) |
|
|
102 | (1) |
|
|
102 | (11) |
4 Overview of gravitational search algorithm |
|
113 | (42) |
|
|
113 | (2) |
|
4.2 Description of original GSA |
|
|
115 | (10) |
|
|
117 | (1) |
|
4.2.2 General remarks about GSA |
|
|
118 | (2) |
|
4.2.3 MATLAB® code of GSA |
|
|
120 | (3) |
|
4.2.4 Example usage of GSA |
|
|
123 | (2) |
|
4.3 Binary gravitational search algorithm |
|
|
125 | (1) |
|
|
126 | (2) |
|
|
128 | (3) |
|
4.5.1 Current optimum opposition-based GSA |
|
|
129 | (2) |
|
4.6 Adaptive gbest-guided GSA |
|
|
131 | (2) |
|
4.6.1 Slow exploitation of GSA |
|
|
131 | (1) |
|
4.6.2 Improving the exploitation of GSA |
|
|
131 | (2) |
|
|
133 | (2) |
|
4.8 Nondominated sorting GSA |
|
|
135 | (4) |
|
4.8.1 Updating the external archive |
|
|
136 | (1) |
|
4.8.2 Updating the list of moving agents |
|
|
137 | (1) |
|
4.8.3 Updating the mass of moving agents |
|
|
137 | (1) |
|
4.8.4 Updating the acceleration of agents |
|
|
137 | (1) |
|
4.8.5 The use of mutation operator |
|
|
138 | (1) |
|
4.8.6 Update and mutate the position of agents |
|
|
138 | (1) |
|
4.9 Clustered-gravitational search algorithm |
|
|
139 | (1) |
|
4.10 Hybrid PSO and GSA algorithm |
|
|
140 | (5) |
|
4.11 Applications of GSA to power system problems-literature overview |
|
|
145 | (4) |
|
4.11.1 Optimal power flow |
|
|
145 | (1) |
|
4.11.2 Optimal reactive power dispatch |
|
|
146 | (1) |
|
4.11.3 Economic dispatch using GSA |
|
|
146 | (1) |
|
4.11.4 Optimal power flow in distribution networks |
|
|
147 | (1) |
|
4.11.5 Optimal DG placement and sizing in distribution networks |
|
|
147 | (1) |
|
4.11.6 Optimal energy and operation management of microgrids |
|
|
148 | (1) |
|
4.11.7 Optimal coordination of overcurrent relays |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (5) |
5 Power-flow calculation |
|
155 | (22) |
|
|
155 | (1) |
|
5.2 Power-flow calculation in transmission networks |
|
|
156 | (9) |
|
5.2.1 Power-flow equations |
|
|
157 | (1) |
|
|
158 | (1) |
|
|
158 | (6) |
|
5.2.4 Power-flow software-pfgui |
|
|
164 | (1) |
|
5.3 Power-flow calculation in distribution networks |
|
|
165 | (11) |
|
5.3.1 Backward/forward sweep power-flow algorithm |
|
|
170 | (4) |
|
5.3.2 Power-flow software-pfdngui |
|
|
174 | (2) |
|
|
176 | (1) |
|
|
176 | (1) |
6 Optimal power flow in transmission networks |
|
177 | (58) |
|
|
177 | (1) |
|
|
178 | (7) |
|
6.3 Formulation of the OPF problem |
|
|
185 | (9) |
|
6.3.1 Equality constraints |
|
|
186 | (1) |
|
6.3.2 Inequality constraints |
|
|
186 | (2) |
|
|
188 | (3) |
|
6.3.4 Multiobjective function |
|
|
191 | (1) |
|
6.3.5 Transient-stability-constrained OPF |
|
|
192 | (2) |
|
6.4 Solution methodology for OPF problem |
|
|
194 | (6) |
|
|
194 | (1) |
|
6.4.2 Application of PSO to the OPF problem |
|
|
195 | (1) |
|
|
196 | (2) |
|
6.4.4 Application of GSA to the OPF problem |
|
|
198 | (1) |
|
6.4.5 Overview of hybrid PSOGSA |
|
|
199 | (1) |
|
6.4.6 Application of PSOGSA to the OPF problem |
|
|
199 | (1) |
|
|
200 | (13) |
|
6.5.1 IEEE 30-bus test system |
|
|
200 | (11) |
|
6.5.2 IEEE 118-bus test system |
|
|
211 | (2) |
|
6.6 Solution software-opfgui |
|
|
213 | (10) |
|
|
223 | (1) |
|
|
224 | (11) |
7 Optimal reactive power dispatch in transmission networks |
|
235 | (32) |
|
|
235 | (1) |
|
|
236 | (2) |
|
7.3 ORPD using hybrid PSOGSA |
|
|
238 | (17) |
|
|
238 | (2) |
|
7.3.2 Application of PSOGSA to the ORPD problem |
|
|
240 | (1) |
|
7.3.3 Simulation results of PSOGSA |
|
|
241 | (14) |
|
7.4 ORPD using hybrid GSA-SQP algorithm |
|
|
255 | (2) |
|
7.4.1 Application of hybrid GSA-SQP to the ORPD problem |
|
|
256 | (1) |
|
7.4.2 Simulation results of hybrid GSA-SQP |
|
|
257 | (1) |
|
7.5 Educational program package ORPD |
|
|
257 | (6) |
|
|
263 | (1) |
|
|
263 | (4) |
8 Combined economic and emission dispatch |
|
267 | (30) |
|
|
267 | (2) |
|
|
269 | (4) |
|
|
270 | (1) |
|
|
270 | (1) |
|
|
271 | (1) |
|
8.2.4 Slack generator calculation |
|
|
272 | (1) |
|
|
273 | (4) |
|
|
273 | (2) |
|
8.3.2 PSOGSA implementation to the CEED problem |
|
|
275 | (2) |
|
|
277 | (9) |
|
|
277 | (4) |
|
|
281 | (4) |
|
|
285 | (1) |
|
8.5 Educational software-ceedgui |
|
|
286 | (6) |
|
|
292 | (1) |
|
|
293 | (4) |
9 Optimal power flow in distribution networks |
|
297 | (40) |
|
|
297 | (2) |
|
9.2 Deterministic optimal power flow |
|
|
299 | (3) |
|
|
300 | (1) |
|
|
301 | (1) |
|
9.3 DG units modeling for OPF |
|
|
302 | (5) |
|
|
303 | (1) |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
304 | (1) |
|
|
305 | (1) |
|
9.3.6 Mini hydropower plants |
|
|
306 | (1) |
|
|
306 | (1) |
|
|
307 | (4) |
|
|
307 | (2) |
|
9.4.2 Gravitational search algorithm |
|
|
309 | (2) |
|
9.5 Probabilistic optimal power flow |
|
|
311 | (5) |
|
9.5.1 Statistical characterization of the input random variables |
|
|
311 | (2) |
|
9.5.2 Statistical evaluation of the output variables |
|
|
313 | (1) |
|
9.5.3 Procedure for solving probabilistic OPF |
|
|
314 | (2) |
|
|
316 | (8) |
|
9.6.1 Deterministic OPF analysis |
|
|
318 | (3) |
|
9.6.2 Probabilistic OPF analysis |
|
|
321 | (3) |
|
9.7 Solution software-opfdngui |
|
|
324 | (3) |
|
|
327 | (5) |
|
|
332 | (5) |
10 Optimal Volt/Var control in distribution networks |
|
337 | (26) |
|
|
337 | (2) |
|
10.2 Decomposition of the voltage-control problem |
|
|
339 | (11) |
|
10.2.1 Seasonal control of voltage |
|
|
340 | (10) |
|
10.3 Optimal Volt/Var control using metaheuristic optimization |
|
|
350 | (9) |
|
10.3.1 Problem formulation |
|
|
350 | (2) |
|
|
352 | (3) |
|
10.3.3 Simulation results |
|
|
355 | (4) |
|
|
359 | (1) |
|
|
360 | (3) |
11 Optimal placement and sizing of distributed generation in distribution networks |
|
363 | (44) |
|
|
363 | (6) |
|
11.2 Preliminary locations of DG |
|
|
369 | (3) |
|
11.3 Partial search of variants |
|
|
372 | (5) |
|
11.3.1 Optimal DG placement by using partial search of variants |
|
|
373 | (2) |
|
11.3.2 Optimal DG sizing by using partial search of variants |
|
|
375 | (2) |
|
|
377 | (4) |
|
11.4.1 Optimal DG placement and sizing by using GA |
|
|
378 | (3) |
|
|
381 | (18) |
|
11.5.1 IEEE 31-bus system |
|
|
381 | (10) |
|
11.5.2 Distribution network Zajecar |
|
|
391 | (8) |
|
11.6 Educational program package opsdg |
|
|
399 | (2) |
|
|
401 | (1) |
|
|
401 | (6) |
12 Optimal energy and operation management of microgrids |
|
407 | (42) |
|
|
407 | (4) |
|
12.2 Problem formulation of EOM |
|
|
411 | (5) |
|
12.2.1 Objective function |
|
|
412 | (1) |
|
|
412 | (2) |
|
12.2.3 Distributed generation bids calculation |
|
|
414 | (2) |
|
|
416 | (3) |
|
|
417 | (1) |
|
12.3.2 Application of PSO to EOM |
|
|
418 | (1) |
|
12.4 Probabilistic EOM of MG |
|
|
419 | (5) |
|
12.4.1 Statistical characterization of the input random variables |
|
|
420 | (1) |
|
12.4.2 Statistical evaluation of the output variables |
|
|
421 | (1) |
|
12.4.3 Procedure for solving probabilistic EOM |
|
|
422 | (2) |
|
|
424 | (20) |
|
|
424 | (6) |
|
|
430 | (7) |
|
12.5.3 MATLAB program eom used for deterministic EOM |
|
|
437 | (7) |
|
|
444 | (1) |
|
|
444 | (5) |
13 Optimal coordination of directional overcurrent relays |
|
449 | (26) |
|
|
449 | (1) |
|
|
450 | (5) |
|
13.2.1 Objective function |
|
|
451 | (1) |
|
13.2.2 Limits of the settings |
|
|
452 | (1) |
|
13.2.3 Limits of relay operation time |
|
|
453 | (1) |
|
13.2.4 Coordination criteria |
|
|
453 | (1) |
|
13.2.5 Modification of objective function for minimization of CTI |
|
|
454 | (1) |
|
|
455 | (4) |
|
|
455 | (2) |
|
|
457 | (1) |
|
13.3.3 Hybrid GSA-SQP algorithm |
|
|
457 | (1) |
|
13.3.4 Implementation of hybrid GSA-SQP algorithm |
|
|
458 | (1) |
|
|
459 | (9) |
|
|
459 | (2) |
|
|
461 | (2) |
|
|
463 | (3) |
|
13.4.4 Statistical evaluation of the results |
|
|
466 | (2) |
|
13.5 Educational program package ocdocr |
|
|
468 | (3) |
|
|
471 | (1) |
|
|
471 | (4) |
14 Steady-state analysis of self-excited induction generators |
|
475 | (30) |
|
|
475 | (2) |
|
14.2 System configuration |
|
|
477 | (1) |
|
14.3 Induction generator model |
|
|
478 | (1) |
|
14.4 Steady-state equations of SEIG |
|
|
479 | (2) |
|
14.5 Steady-state equations of parallel operated SEIGs |
|
|
481 | (3) |
|
|
484 | (6) |
|
14.6.1 Overview of genetic algorithm |
|
|
485 | (1) |
|
14.6.2 Application of GA to SEIG |
|
|
486 | (2) |
|
14.6.3 Application of GA to parallel operated SEIGs |
|
|
488 | (2) |
|
|
490 | (11) |
|
14.7.1 Steady-state analysis of SEIG |
|
|
490 | (4) |
|
14.7.2 Steady-state analysis of parallel operated SEIGs |
|
|
494 | (7) |
|
|
501 | (1) |
|
|
502 | (3) |
Index |
|
505 | |