Acknowledgments |
|
xi | |
Introduction |
|
xiii | |
|
Chapter 1 Optimization and Big Data |
|
|
1 | (22) |
|
|
1 | (9) |
|
1.1.1 Examples of situations |
|
|
2 | (1) |
|
|
3 | (2) |
|
1.1.3 Big Data challenges |
|
|
5 | (3) |
|
1.1.4 Metaheuristics and Big Data |
|
|
8 | (2) |
|
1.2 Knowledge discovery in Big Data |
|
|
10 | (7) |
|
1.2.1 Data mining versus knowledge discovery |
|
|
10 | (2) |
|
1.2.2 Main data mining tasks |
|
|
12 | (4) |
|
1.2.3 Data mining tasks as optimization problems |
|
|
16 | (1) |
|
1.3 Performance analysis of data mining algorithms |
|
|
17 | (4) |
|
|
17 | (1) |
|
1.3.2 Evaluation among one or several dataset(s) |
|
|
18 | (2) |
|
1.3.3 Repositories and datasets |
|
|
20 | (1) |
|
|
21 | (2) |
|
Chapter 2 Metaheuristics -- A Short Introduction |
|
|
23 | (30) |
|
|
24 | (2) |
|
2.1.1 Combinatorial optimization problems |
|
|
24 | (1) |
|
2.1.2 Solving a combinatorial optimization problem |
|
|
25 | (1) |
|
2.1.3 Main types of optimization methods |
|
|
25 | (1) |
|
2.2 Common concepts of metaheuristics |
|
|
26 | (5) |
|
2.2.1 Representation/encoding |
|
|
27 | (1) |
|
2.2.2 Constraint satisfaction |
|
|
28 | (1) |
|
2.2.3 Optimization criterion/objective function |
|
|
28 | (1) |
|
2.2.4 Performance analysis |
|
|
29 | (2) |
|
2.3 Single solution-based/local search methods |
|
|
31 | (7) |
|
2.3.1 Neighborhood of a solution |
|
|
31 | (2) |
|
2.3.2 Hill climbing algorithm |
|
|
33 | (1) |
|
|
34 | (1) |
|
2.3.4 Simulated annealing and threshold acceptance approach |
|
|
35 | (1) |
|
2.3.5 Combining local search approaches |
|
|
36 | (2) |
|
2.4 Population-based metaheuristics |
|
|
38 | (5) |
|
2.4.1 Evolutionary computation |
|
|
38 | (3) |
|
|
41 | (2) |
|
2.5 Multi-objective metaheuristics |
|
|
43 | (9) |
|
2.5.1 Basic notions in multi-objective optimization |
|
|
44 | (3) |
|
2.5.2 Multi-objective optimization using metaheuristics |
|
|
47 | (4) |
|
2.5.3 Performance assessment in multi-objective optimization |
|
|
51 | (1) |
|
|
52 | (1) |
|
Chapter 3 Metaheuristics and Parallel Optimization |
|
|
53 | (10) |
|
|
53 | (2) |
|
|
53 | (1) |
|
3.1.2 Instruction-level parallelism |
|
|
54 | (1) |
|
3.1.3 Task and data parallelism |
|
|
54 | (1) |
|
3.2 Parallel metaheuristics |
|
|
55 | (2) |
|
|
55 | (1) |
|
3.2.2 Parallel single solution-based metaheuristics |
|
|
55 | (2) |
|
3.2.3 Parallel population-based metaheuristics |
|
|
57 | (1) |
|
3.3 Infrastructure and technologies for parallel metaheuristics |
|
|
57 | (3) |
|
|
57 | (1) |
|
|
58 | (2) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (2) |
|
Chapter 4 Metaheuristics and Clustering |
|
|
63 | (24) |
|
|
63 | (5) |
|
4.1.1 Partitioning methods |
|
|
65 | (1) |
|
4.1.2 Hierarchical methods |
|
|
66 | (1) |
|
|
67 | (1) |
|
4.1.4 Density-based methods |
|
|
67 | (1) |
|
4.2 Big Data and clustering |
|
|
68 | (1) |
|
|
68 | (13) |
|
4.3.1 A combinatorial problem |
|
|
69 | (1) |
|
|
69 | (7) |
|
|
76 | (5) |
|
|
81 | (1) |
|
|
82 | (4) |
|
4.5.1 Internal validation |
|
|
84 | (1) |
|
4.5.2 External validation |
|
|
84 | (2) |
|
|
86 | (1) |
|
Chapter 5 Metaheuristics and Association Rules |
|
|
87 | (22) |
|
5.1 Task description and classical approaches |
|
|
88 | (2) |
|
|
88 | (1) |
|
|
89 | (1) |
|
|
90 | (3) |
|
5.2.1 A combinatorial problem |
|
|
90 | (1) |
|
|
90 | (1) |
|
5.2.3 A mono-or a multi-objective problem? |
|
|
91 | (2) |
|
5.3 Overview of metaheuristics for the association rules mining problem |
|
|
93 | (12) |
|
|
93 | (1) |
|
5.3.2 Metaheuristics for categorical association rules |
|
|
94 | (5) |
|
5.3.3 Evolutionary algorithms for quantitative association rules |
|
|
99 | (3) |
|
5.3.4 Metaheuristics for fuzzy association rules |
|
|
102 | (3) |
|
|
105 | (2) |
|
|
107 | (2) |
|
Chapter 6 Metaheuristics and (Supervised) Classification |
|
|
109 | (26) |
|
6.1 Task description and standard approaches |
|
|
110 | (4) |
|
6.1.1 Problem description |
|
|
110 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
6.1.5 Artificial neural networks |
|
|
113 | (1) |
|
6.1.6 Support vector machines |
|
|
114 | (1) |
|
|
114 | (4) |
|
6.2.1 A combinatorial problem |
|
|
114 | (1) |
|
|
114 | (3) |
|
6.2.3 Methodology of performance evaluation in supervised classification |
|
|
117 | (1) |
|
6.3 Metaheuristics to build standard classifiers |
|
|
118 | (8) |
|
6.3.1 Optimization of K-NN |
|
|
118 | (1) |
|
|
119 | (3) |
|
6.3.3 Optimization of ANN |
|
|
122 | (2) |
|
6.3.4 Optimization of SVM |
|
|
124 | (2) |
|
6.4 Metaheuristics for classification rules |
|
|
126 | (6) |
|
|
126 | (1) |
|
6.4.2 Objective function(s) |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
130 | (2) |
|
|
132 | (3) |
|
Chapter 7 On the Use of Metaheuristics for Feature Selection in Classification |
|
|
135 | (12) |
|
|
136 | (2) |
|
|
136 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (5) |
|
7.2.1 A combinatorial optimization problem |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (3) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (3) |
|
|
147 | (12) |
|
8.1 Frameworks for designing metaheuristics |
|
|
147 | (4) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
8.2 Framework for data mining |
|
|
151 | (2) |
|
|
152 | (1) |
|
|
153 | (1) |
|
8.3 Framework for data mining with metaheuristics |
|
|
153 | (4) |
|
|
154 | (1) |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
157 | (2) |
Conclusion |
|
159 | (2) |
Bibliography |
|
161 | (26) |
Index |
|
187 | |