Muutke küpsiste eelistusi

E-raamat: Metaheuristics for Machine Learning: New Advances and Tools

Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 172,28 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Using metaheuristics to enhance machine learning techniques has become trendy and has achieved major successes in both supervised (classification and regression) and unsupervised (clustering and rule mining) problems. Furthermore, automatically generating programs via metaheuristics, as a form of evolutionary computation and swarm intelligence, has now gained widespread popularity. This book investigates different ways of integrating metaheuristics into machine learning techniques, from both theoretical and practical standpoints. It explores how metaheuristics can be adapted in order to enhance machine learning tools and presents an overview of the main metaheuristic programming methods. Moreover, real-world applications are provided for illustration, e.g., in clustering, big data, machine health monitoring, underwater sonar targets, and banking.

1. From metaheuristics to automatic programming.- 2. Biclustering
Algorithms Based on Metaheuristics: A Review.- 3. A Metaheuristic Perspective
on Learning Classifier Systems.- 4. An evolutionary clustering approach using
metaheuristics and unsupervised machine learning algorithms for customer
segmentation.- 5. Applications of Metaheuristics in Parameter Optimization in
Manufacturing Processes and Machine Health Monitoring.- 6. Evolving Machine
Learning-based classifiers by metaheuristic approaches for underwater sonar
target detection and recognition.- 7. Solving the Quadratic Knapsack Problem
using a GRASP algorithm based on a multi-swap local search.- 8. Algorithmic
vs Processing Manipulations to Scale Genetic Programming to Big Data Mining.-
9. Dynamic assignment problem of parking slots.
Mansour Eddaly is an assistant professor in the College of Business and Economics at Qassim University (KSA). His current research interests mainly involve combinatorial optimization, metaheuristics, and computational intelligence.





Bassem Jarboui is Full Professor of Operational Research at Sfax University, Tunisia, where he also completed his PhD. Currently, he is working at the Higher Colleges of Technology, Abu Dhabi, UAE. He has edited seven books and two special journal issues. He has also organized and chaired five international conferences. He has published over 130 scientific papers, including articles, contributions to edited proceedings, and book chapters.





Patrick Siarry received his PhD from the University of Paris 6 in 1986 and his Doctor of Sciences (Habilitation) from the University of Paris 11 in 1994. He first became involved in the development of analogue and digital models of nuclear power plants at Électricité de France (E.D.F.). He has been Professor of Automatics and Informatics since 1995. His main research interest is in the applications of new stochastic global optimization heuristics to various engineering fields.