Muutke küpsiste eelistusi

E-raamat: Metal Oxides for Non-volatile Memory: Materials, Technology and Applications

Edited by (Senior Researcher, Cleanroom Facility Manager, Institute of Nanoscience and Nanotechnology, Greece), Edited by (Senior Scientist, Peter Gruenberg Institute, Electronic Materials (IEM), Julich, Germany), Edited by (Professor for Micro- and Nanoelectronics)
  • Formaat: EPUB+DRM
  • Sari: Metal Oxides
  • Ilmumisaeg: 01-Mar-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128146309
  • Formaat - EPUB+DRM
  • Hind: 266,18 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Metal Oxides
  • Ilmumisaeg: 01-Mar-2022
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128146309

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Metal Oxides for Non-volatile Memory: Materials, Technology and Applications covers the technology and applications of metal oxides (MOx) in non-volatile memory (NVM) technology. The book addresses all types of NVMs, including floating-gate memories, 3-D memories, charge-trapping memories, quantum-dot memories, resistance switching memories and memristors, Mott memories and transparent memories. Applications of MOx in DRAM technology where they play a crucial role to the DRAM evolution are also addressed. The book offers a broad scope, encompassing discussions of materials properties, deposition methods, design and fabrication, and circuit and system level applications of metal oxides to non-volatile memory.

Finally, the book addresses one of the most promising materials that may lead to a solution to the challenges in chip size and capacity for memory technologies, particular for mobile applications and embedded systems.

  • Systematically covers metal oxides materials and their properties with memory technology applications, including floating-gate memory, 3-D memory, memristors, and much more
  • Provides an overview on the most relevant deposition methods, including sputtering, CVD, ALD and MBE
  • Discusses the design and fabrication of metal oxides for wide breadth of non-volatile memory applications from 3-D flash technology, transparent memory and DRAM technology
Contributors ix
Series editor biography xiii
Preface to the series xv
1 Introduction to non-volatile memory
Stefan Tappertzhofen
1.1 Introduction and history
1(3)
1.2 Flash non-volatile memory
4(9)
1.3 Novel concepts for non-volatile memories
13(20)
Acknowledgements
26(1)
References
26(7)
2 Resistive switching in metal-oxide memristive materials and devices
A.N. Mikhaylov
M.N. Koryazhkina
D.S. Korolev
A.I. Belov
E.V. Okulich
V.I. Okulich
I.N. Antonov
R.A. Shuisky
D.V. Guseinov
K.V. Sidorenko
M.E. Shenina
E.G. Gryaznov
S.V. Tikhov
D.O. Filatov
D.A. Pavlov
D.I. Tetelbaum
O.N. Gorshkov
B. Spagnolo
2.1 Mechanisms of resistive switching in metal-oxide memristive materials and devices
33(10)
2.2 Local analysis of resistive switching of anionic type
43(13)
2.3 Multiscale simulation of resistive switching in metal-oxide memristive devices
56(16)
2.4 Conclusions
72(7)
Acknowledgments
73(1)
References
73(6)
3 Charge trapping NVMs with metal oxides in the memory stack
Krishnaswamy Ramkumar
3.1 Introduction
79(1)
3.2 History of charge trap memory devices
79(1)
3.3 SONOS memory devices
80(4)
3.4 CT memory cell reliability
84(2)
3.5 New materials for charge trap memory stack---Metal oxides
86(23)
References
106(3)
4 Technology and neuromorphic functionality of magnetron-sputtered memristive devices
A.N. Mikhaylov
M.N. Koryazhkina
D.S. Korolev
A.I. Belov
E.V. Okulich
V.I. Okulich
I.N. Antonov
R.A. Shuisky
D.V. Guseinov
K.V. Sidorenko
M.E. Shenina
E.G. Gryaznov
S.V. Tikhov
D.O. Filatov
D.A. Pavlov
D.I. Tetelbaum
O.N. Gorshkov
A.V. Emelyanov
K.E. Nikiruy
V.V. Rylkov
V.A. Demin
B. Spagnolo
4.1 Features of magnetron sputtering
109(1)
4.2 Performances and reproducibility of memristive devices
110(9)
4.3 Functionality of memristors as elements for neuromorphic systems
119(9)
4.4 Conclusions
128(5)
Acknowledgments
129(1)
References
129(4)
5 Metalorganic chemical vapor deposition of aluminum oxides: A paradigm on the process-structure-properties relationship
Constantin Vahlas
Brigitte Caussat
5.1 Introduction
133(2)
5.2 Process kinetic modeling and simulation of the MOCVD of metal oxides: The case of Al2O3 films
135(12)
5.3 Local coordination affects properties: The case of amorphous Al2O3 barrier coatings
147(16)
5.4 Concluding remarks
163(6)
Acknowledgements
164(1)
References
164(5)
6 MOx materials by ALD method
Elena Cianci
Sabina Spiga
6.1 Introduction
169(1)
6.2 ALD fundamentals
170(4)
6.3 ALD of oxides for memory devices
174(16)
6.4 Conclusions
190(11)
References
190(11)
7 Nano-composite MOx materials for NVMs
C. Bonafos
L. Khomenkhova
F. Gourbilleau
E. Talbot
A. Slaoui
M. Carrada
S. Schamm-Chardon
P. Dimitrakis
P. Normand
7.1 Introduction
201(4)
7.2 Experimental
205(32)
7.3 Conclusion
237(8)
Acknowledgments
239(1)
References
239(6)
8 MOx in ferroelectric memories
Stefan Slesazeck
Halid Mulaosmanovic
Michael Hoffmann
Uwe Schroeder
Thomas Mikolajick
Benjamin Max
8.1 Introduction
245(1)
8.2 Ferroelectricity---A material property
246(2)
8.3 Negative capacitance in ferroelectrics
248(2)
8.4 Ferroelectricity in hafnium oxide
250(14)
8.5 Ferroelectric memories
264(9)
8.6 Summary and future prospects
273(8)
References
273(8)
9 "Metal oxides in magnetic memories": Current status and future perspectives
Andreas Kaidatzis
Georgios Giannopoulos
Dimitris Niarchos
9.1 Introduction
281(5)
9.2 Magnetic random access memory (MRAM)
286(7)
9.3 Metal oxides in MRAMs
293(8)
9.4 Perspectives
301(6)
References
302(5)
10 Correlated transition metal oxides and chalcogenides for Mott memories and neuromorphic applications
Laurent Cario
Julien Tranchant
Benoit Corraze
Etienne Janod
10.1 Introduction
307(1)
10.2 Mott insulators and Mott transitions
308(13)
10.3 Electric Mott transitions
321(3)
10.4 Electric Mott transition by dielectric breakdown: Detailed mechanism
324(12)
10.5 Microelectronic applications of Mott insulators: Toward Mottronics
336(14)
10.6 Conclusion
350(12)
References
351(11)
11 The effect of external stimuli on the performance of memristive oxides
Yang Li
Dennis Valbjørn Christensen
Simone Sanna
Vincenzo Esposito
Nini Pryds
11.1 Introduction
362(2)
11.2 Electrical field
364(5)
11.3 Magnetic field
369(2)
11.4 Thermochemical treatments
371(2)
11.5 Strain
373(5)
11.6 Radiation
378(8)
11.7 Outlook
386(14)
References
386(14)
12 Nonvolatile MOx RRAM assisted by graphene and 2D materials
Qi Liu
Xiaolong Zhao
12.1 MOx RRAM with graphene-based electrodes
400(11)
12.2 Modulating ion migration in MOx RRAM by 2D materials
411(15)
12.3 MOx RRAM assisted by additional 2D intercalation layer
426(9)
12.4 Conclusion
435(10)
References
437(8)
13 Ubiquitous memristors on-chip in multi-level memory, in-memory computing, data converters, clock generation and signal transmission
Ioannis Vourkas
Manuel Escudero
Georgios Ch. Sirakoulis
Antonio Rubio
13.1 Introduction
445(2)
13.2 Multi-level memory and in-memory arithmetic structures
447(4)
13.3 ADC and DAC in-memory data converters
451(4)
13.4 Memristor-based clock signal generators
455(2)
13.5 Metastable memristive transmission lines
457(3)
13.6 Conclusions
460(5)
Acknowledgment
460(1)
References
460(5)
14 Neuromorphic applications using MOx-based memristors
S. Brivio
E. Vianello
14.1 Introduction on neuromorphic computing
465(2)
14.2 Recap of MOx-based memristor technology
467(7)
14.3 Advanced memristor functionalities useful for neuromorphic applications
474(10)
14.4 Overview of neuromorphic concepts and system prototypes
484(12)
14.5 Conclusions and outlook
496(13)
References
497(12)
Index 509
Panagiotis Dimitrakis is a Senior Researcher, Cleanroom Facility Manager in the Institute of Nanoscience and Nanotechnology, Greece. Ilia Valov is a Senior Scientist at the Peter Gruenberg Institute, Electronic Materials (IEM), Julich, Germany. Prof. Dr. Stefan Tappertzhofen studied electrical engineering and information technology at RWTH Aachen University and received his PhD in 2014. From 2014 2016 he worked as research associate at the Department of Engineering, University of Cambridge. Afterwards, he worked as a research and development manager for semiconductor measurement technology at aixACCT Systems. Since 2020 he is Professor in Micro- and Nanoelectronics at TU Dortmund University. His research is focused on novel multi-functional materials, memristive systems and circuits, and quantum- and nanotechnology.