Preface |
|
xi | |
Preface to the First Edition |
|
xiii | |
Acknowledgments |
|
xv | |
|
1 Introduction and Synopsis |
|
|
1 | (8) |
|
|
1 | (4) |
|
|
5 | (4) |
|
|
9 | (60) |
|
|
9 | (1) |
|
2.2 Inference in Linear Models |
|
|
9 | (6) |
|
|
15 | (10) |
|
2.3.1 Finite-Sample Breakdown and Tail-Performance |
|
|
20 | (5) |
|
2.4 Robust and Minimax Estimation of Location |
|
|
25 | (4) |
|
2.5 Clippings from Probability and Asymptotic Theory |
|
|
29 | (38) |
|
2.5.1 Modes of Convergence of Stochastic Elements |
|
|
31 | (3) |
|
2.5.2 Basic Probability Inequalities |
|
|
34 | (2) |
|
2.5.3 Some Useful Inequalities and Lemmas |
|
|
36 | (4) |
|
2.5.4 Laws of Large Numbers and Related Inequalities |
|
|
40 | (2) |
|
2.5.5 Central Limit Theorems |
|
|
42 | (6) |
|
2.5.6 Limit Theorems Allied to Central Limit Theorems |
|
|
48 | (2) |
|
2.5.7 Central Limit Theorems for Quadratic Forms |
|
|
50 | (1) |
|
2.5.8 Contiguity of Probability Measures |
|
|
51 | (1) |
|
2.5.9 Hajek--Inagaki--LeCam theorem and the LAN condition |
|
|
52 | (1) |
|
2.5.10 Weak Convergence of Probability Measures |
|
|
53 | (4) |
|
2.5.11 Some Important Gaussian Functions |
|
|
57 | (2) |
|
2.5.12 Weak Invariance Principles |
|
|
59 | (1) |
|
2.5.13 Empirical Distributional Processes |
|
|
60 | (4) |
|
2.5.14 Weak Invariance Principle: Random Change of Time |
|
|
64 | (1) |
|
2.5.15 Embedding Theorems and Strong Invariance Principles |
|
|
64 | (2) |
|
2.5.16 Asymptotic Relative Efficiency: Concept and Measures |
|
|
66 | (1) |
|
|
67 | (2) |
|
3 Robust Estimation of Location and Regression |
|
|
69 | (48) |
|
|
69 | (1) |
|
|
70 | (8) |
|
|
78 | (13) |
|
|
91 | (13) |
|
3.5 Minimum Distance and Pitman Estimators |
|
|
104 | (4) |
|
3.5.1 Minimum Distance Estimation |
|
|
104 | (2) |
|
|
106 | (1) |
|
3.5.3 Pitman-Type Estimators of Location |
|
|
106 | (1) |
|
3.5.4 Bayes-Type Estimators of General Parameter |
|
|
107 | (1) |
|
3.6 Differentiable Statistical Functions |
|
|
108 | (4) |
|
|
112 | (5) |
|
4 Asymptotic Representations for L-Estimators |
|
|
117 | (44) |
|
|
117 | (2) |
|
4.2 Bahadur Representations for Sample Quantiles |
|
|
119 | (4) |
|
4.3 L-Statistics with Smooth Scores |
|
|
123 | (6) |
|
|
129 | (1) |
|
4.5 Statistical Functionals |
|
|
130 | (5) |
|
4.6 Second-Order Asymptotic Distributional Representations |
|
|
135 | (7) |
|
4.7 L-Estimation in Linear Model |
|
|
142 | (10) |
|
4.8 Breakdown Point of L- and M-Estimators |
|
|
152 | (3) |
|
|
155 | (2) |
|
|
157 | (4) |
|
5 Asymptotic Representations for M-Estimators |
|
|
161 | (48) |
|
|
161 | (1) |
|
5.2 M-Estimation of General Parameters |
|
|
161 | (8) |
|
5.3 M-Estimation of Location: Fixed Scale |
|
|
169 | (13) |
|
5.3.1 Possibly Discontinuous but Monotone ψ |
|
|
173 | (2) |
|
5.3.2 Possibly Discontinuous and Nonmonotone ψ |
|
|
175 | (2) |
|
5.3.3 Second-Order Distributional Representations |
|
|
177 | (5) |
|
5.4 Studentized M-Estimators of Location |
|
|
182 | (9) |
|
5.5 M-Estimation in Linear Model |
|
|
191 | (8) |
|
5.6 Studentizing Scale Statistics |
|
|
199 | (3) |
|
5.7 Hadamard Differentiability in Linear Models |
|
|
202 | (3) |
|
|
205 | (1) |
|
|
206 | (3) |
|
6 Asymptotic Representations for R-Estimators |
|
|
209 | (28) |
|
|
209 | (1) |
|
6.2 Asymptotic Representations for R-Estimators of Location |
|
|
210 | (7) |
|
6.3 Representations for R-Estimators in Linear Model |
|
|
217 | (7) |
|
6.4 Regression Rank Scores |
|
|
224 | (3) |
|
6.5 Inference Based on Regression Rank Scores |
|
|
227 | (6) |
|
|
229 | (1) |
|
|
230 | (1) |
|
6.5.3 Studentizing Scale Statistics and Regression Rank Scores |
|
|
231 | (2) |
|
6.6 Bibliographical Notes |
|
|
233 | (1) |
|
|
234 | (3) |
|
7 Asymptotic Interrelations of Estimators |
|
|
237 | (30) |
|
|
237 | (2) |
|
7.2 Estimators of location |
|
|
239 | (10) |
|
7.3 Estimation in linear model |
|
|
249 | (3) |
|
7.4 Approximation by One-Step Versions |
|
|
252 | (12) |
|
|
264 | (1) |
|
|
265 | (2) |
|
8 Robust Estimation: Multivariate Perspectives |
|
|
267 | (48) |
|
|
267 | (1) |
|
8.2 The Notion of Multivariate Symmetry |
|
|
268 | (3) |
|
8.3 Multivariate Location Estimation |
|
|
271 | (5) |
|
8.4 Multivariate Regression Estimation |
|
|
276 | (3) |
|
8.4.1 Normal Multivariate Linear Model |
|
|
277 | (1) |
|
8.4.2 General Multivariate Linear Model |
|
|
277 | (2) |
|
8.5 Affine-Equivariant Robust Estimation |
|
|
279 | (12) |
|
8.5.1 Smooth Affine-Equivariant L-Estimation of θ |
|
|
281 | (7) |
|
8.5.2 Affine-Equivariant Regression Estimation |
|
|
288 | (2) |
|
8.5.3 Additional Remarks and Comments |
|
|
290 | (1) |
|
8.6 Efficiency and Minimum Risk Estimation |
|
|
291 | (5) |
|
8.7 Stein-Rule Estimators and Minimum Risk Efficiency |
|
|
296 | (10) |
|
|
297 | (4) |
|
8.7.2 Extension to the Linear Model |
|
|
301 | (5) |
|
8.8 Robust Estimation of Multivariate Scatter |
|
|
306 | (2) |
|
8.9 Some Complementary and Supplementary Notes |
|
|
308 | (2) |
|
|
310 | (5) |
|
9 Robust Tests and Confidence Sets |
|
|
315 | (36) |
|
|
315 | (1) |
|
|
316 | (12) |
|
9.2.1 M-Tests of Location |
|
|
316 | (3) |
|
9.2.2 M-Tests in Linear Model |
|
|
319 | (3) |
|
|
322 | (2) |
|
9.2.4 Robustness of Tests |
|
|
324 | (3) |
|
9.2.5 Some Remarks on the Wald-Type Tests |
|
|
327 | (1) |
|
|
328 | (1) |
|
9.4 Robust Confidence Sets |
|
|
329 | (13) |
|
9.4.1 Type I Confidence Intervals |
|
|
330 | (7) |
|
9.4.2 Type II Confidence Intervals |
|
|
337 | (5) |
|
9.5 Multiparameter Confidence Sets |
|
|
342 | (4) |
|
9.6 Affine-Equivariant Tests and Confidence Sets |
|
|
346 | (3) |
|
|
349 | (2) |
|
|
351 | (6) |
|
Uniform Asymptotic Linearity |
|
|
351 | (6) |
References |
|
357 | (28) |
Subject index |
|
385 | (5) |
Author index |
|
390 | |