Muutke küpsiste eelistusi

E-raamat: Methods in Bioengineering: Organ Preservation and Reengineering

  • Formaat: 280 pages
  • Ilmumisaeg: 31-Jan-2011
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608070145
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 280 pages
  • Ilmumisaeg: 31-Jan-2011
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608070145
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Written and edited by recognized experts in the field, the new "Artech House Methods in Bioengineering book series" offers detailed guidance on authoritative methods for addressing specific bioengineering laboratory challenges. Offering a highly practical presentation of each topic, each book provides research engineers, scientists, and students with step-by-step procedures, clear examples, and effective ways to overcome possible problems. This first-of-its-kind volume addresses the important challenge of organ preservation and reengineering. This book presents cutting-edge techniques for damaged livers and hearts via normothermic perfusion, hypothermic machine perfusion for the liver, kidney and pancreas, and imaging techniques to assess the viability of injured kidneys. Professionals and researchers also find methods to decellularize whole organs to create scaffolds for tissue engineering. Moreover, this book presents an approach to enhancing hepatocyte recovery from marginal livers.
Preface xiii
Chapter 1 Normothermic Machine Perfusion of the Liver 1(20)
1.1 Introduction
2(4)
1.1.1 Organ Preservation
2(1)
1.1.2 Cold Storage Preservation
2(1)
1.1.3 Normothermic Machine Perfusion
3(1)
1.1.4 Viability Testing
3(1)
1.1.5 Experimental Data
4(1)
1.1.6 Other Fields of Application
4(2)
1.2 Experimental Design and Methods
6(7)
1.2.1 Materials
6(3)
1.2.2 Methods
9(2)
1.2.3 Parameters
11(2)
1.3 Data Acquisition—Anticipated Results and Interpretation
13(4)
1.3.1 Oxygenation/Blood Gas Analysis
13(1)
1.3.2 Pressure Profile
13(2)
1.3.3 Laboratory Values
15(1)
1.3.4 Histology
16(1)
1.3.5 Immunohistochemistry
16(1)
1.3.6 Transplantation
17(1)
1.4 Discussion and Commentary
17(1)
References
18(3)
Chapter 2 Heart Preservation: Conventional Versus Novel Techniques 21(14)
2.1 Introduction
22(4)
2.1.1 Cold Storage
22(1)
2.1.2 Continuous Perfusion of the Donor Heart
23(1)
2.1.3 Hypothermic Continuous Perfusion
24(1)
2.1.4 Potential Advantages of CP
25(1)
2.1.5 Genetic Therapy: Targeting the Donor Heart
25(1)
2.1.6 Disadvantages of CP
26(1)
2.2 Materials and Methods
26(4)
2.2.1 Materials
26(1)
2.2.2 Methods
27(3)
2.2.2 Graft Assessment
30(1)
2.3 Discussion and Commentary
30(1)
2.4 Summary Points
31(1)
References
31(4)
Chapter 3 Hypothermic Machine Perfusion of Kidneys 35(24)
3.1 Introduction
36(3)
3.1.1 Basic Principles of Organ Preservation
36(1)
3.1.2 History of Hypothermic Perfusion
37(1)
3.1.3 Need for Machine Perfusion in Transplantation
37(2)
3.2 Experimental Methods
39(15)
3.2.1 Hypothermic Perfusion Preservation (4-7°C)
39(12)
3.2.2 Midthermia Perfusion Preservation (15-20°C)
51(3)
3.3 Discussion and Commentary
54(1)
3.4 Application Notes
54(1)
3.5 Summary Points
55(1)
References
56(3)
Chapter 4 Hypothermic Machine Perfusion of Livers 59(26)
4.1 Introduction
60(1)
4.2 Experimental Design
61(1)
4.3 Materials
62(3)
4.3.1 Rat Experiments
62(1)
4.3.2 Swine Experiments
62(3)
4.4 Methods
65(14)
4.4.1 Rat Experiments
65(7)
4.4.2 Swine Experiments
72(7)
4.5 Data Analysis
79(1)
4.6 Anticipated Results
79(2)
4.7 Discussions and Commentary
81(2)
4.8 Application Notes
83(1)
4.9 Summary Points
83(1)
Acknowledgments
84(1)
References
84(1)
Chapter 5 Hypothermic Perfusion of Pancreas: Emphasis on Preservation Prior to Islet Isolation 85(20)
5.1 Introduction
86(1)
5.2 Experimental Methods and Materials
87(6)
5.2.1 Materials
87(1)
5.2.2 Methods
88(5)
5.3 Data Acquisition and Anticipated Results
93(3)
5.4 Discussion and Commentary
96(5)
5.4.1 Pancreas Perfusion on the LifePort Kidney Transporter
96(3)
5.4.2 Pancreas Cannulation for Perfusion
99(1)
5.4.3 Adaptation for Future Applications
100(1)
5.5 Troubleshooting
101(1)
5.6 Application Notes
101(1)
5.7 Summary Points
102(1)
Acknowledgments
103(1)
References
103(2)
Chapter 6 Methods of Cardiac Oxygen Persufflation 105(22)
6.1 Introduction
106(2)
6.1.1 Importance of Oxygenation and Other Technical Features in Organ Preservation
106(1)
6.1.2 Development of Oxygenation in Organ Preservation Techniques Without Continuous Fluid Perfusion
107(1)
6.1.3 Heart Preservation—Optimal Oxygenation Without Continuous Fluid Perfusion
108(1)
6.2 Materials
108(2)
6.2.1 Production of the Valve Guard
109(1)
6.3 Methods
110(2)
6.4 Data Acquisition and Results
112(10)
6.4.1 14-Hour Hypothermic Heart Storage Experiments
113(1)
6.4.2 NHBD Heart Experiments with 16-Minute Normothermic Ischemia and 3.3 Hours of Hypothermic Preservation
114(3)
6.4.3 Evaluation of Coronary Endothelial Function After Preservation and Transplantation of NHBD Hearts
117(3)
6.4.4 Evaluation of Coronary Resistance Vessel After Prolonged COP
120(1)
6.4.5 Evaluation of Metabolic Effect of COP During 3-Hour Preservation After 15-Minute NHBD Phase
120(1)
6.4.6 7-Day Recovery After 14-Hour Persufflation and Heterotopic Transplantation
121(1)
6.5 Discussion and Commentary
122(1)
6.6 Summary Points
123(1)
Acknowledgments
124(1)
References
124(3)
Chapter 7 Vascular Oxygen Persufflation for Preservation and Reconditioning of Marginal Liver Grafts 127(10)
7.1 Introduction
128(1)
7.2 Materials
128(1)
7.3 Methods
129(2)
7.3.1 Surgery
129(1)
7.3.2 Device Setup
129(1)
7.3.3 Connecting Liver/Starting Persufflation
130(1)
7.3.4 Graft Evaluation
131(1)
7.4 Discussion and Commentary
131(2)
7.5 Application Notes
133(1)
7.5.1 Donation After Cardiac Death (DCD)
133(1)
7.5.2 Fatty Livers
133(1)
7.5.3 Hypothermic Reconditioning (HR) for Conventionally Stored Organs
134(1)
7.6 Summary Points
134(1)
References
134(3)
Chapter 8 Use of Optical Imaging and Spectroscopy in Assessment of Organ Perfusion 137(24)
8.1 Introduction
138(6)
8.1.1 Spectral Imaging Technologies Overview
139(5)
8.2 Experimental Design
144(1)
8.3 Materials
145(2)
8.4 Methods
147(2)
8.4.1 Room Setup
147(1)
8.4.2 Preparation for Kidney Harvest
147(1)
8.4.3 Left Kidney Harvest, Preservation, and Data Collection
148(1)
8.4.4 Autotransplantation
149(1)
8.4.5 Reanastomosis
149(1)
8.4.6 Completion of Surgery, Recovery, and Euthanasia
149(1)
8.5 Data Acquisition, Anticipated Results, and Interpretation
149(6)
8.5.1 3-CCD
149(3)
8.5.2 Infrared
152(2)
8.5.3 VRIS
154(1)
8.6 Discussion and Commentary
155(2)
8.7 Summary Points
157(1)
Acknowledgments
158(1)
Disclaimer
158(1)
References
158(3)
Chapter 9 Preparation of a Transplantable Liver Graft by the Recellularization of a Decellularized Whole Organ 161(16)
9.1 Introduction
162(1)
9.2 Methods
162(10)
9.2.1 Liver Harvest
162(3)
9.2.2 Perfusion Decellularization
165(2)
9.2.3 Recellularization and In Vitro Perfusion Culture of the Recellularized Graft
167(3)
9.2.4 Heterotopic Transplantation
170(2)
9.3 Anticipated Results
172(1)
9.3.1 Decellularization
172(1)
9.3.2 Recellularization
172(1)
9.3.3 Heterotopic Transplantation
173(1)
9.4 Discussion and Commentary
173(2)
Acknowledgments
175(1)
References
176(1)
Chapter 10 Engineering Lung Tissue 177(16)
10.1 Introduction
178(1)
10.2 Experimental Design
178(1)
10.3 Materials
179(2)
10.3.1 Reagents
179(2)
10.3.2 Facilities and Equipment
181(1)
10.4 Methods
181(7)
10.4.1 Bioreactor Assembly
181(2)
10.4.2 Organ Harvest
183(1)
10.4.3 Organ Decellularization
184(1)
10.4.4 Organ Rinsing and Sterilization
185(1)
10.4.5 Recellularization
185(1)
10.4.6 Organ Culture
186(1)
10.4.7 Staining, Blotting, and Data Acquisition
187(1)
10.5 Anticipated Results
188(1)
10.6 Discussion and Commentary
189(2)
10.7 Application Notes
191(1)
10.8 Summary Points
191(1)
Acknowledgments
192(1)
References
192(1)
Chapter 11 Detergent-Enzymatic Method for Bioengineering Human Airways 193(20)
11.1 Introduction
194(1)
11.2 Experimental Design
194(1)
11.3 Reagents
195(2)
11.3.1 Preparation of a Human Airway Matrix: Detergent-Enzymatic Protocol
195(1)
11.3.2 Preparation of a Human Airway Matrix: Histology, Immunohistology, and immunofluorescence Histology
195(2)
11.4 Methods
197(8)
11.4.1 Preparation of a Human Airway Matrix
197(2)
11.4.2 Preparation and Differentiation of Chondrocyte Cultures
199(1)
11.4.3 Preparation of Epithelial Cultures
200(2)
11,4.4 Characterization Study
202(1)
11.4.5 Bioreactor Design
203(1)
11.4.6 Graft Preparation
204(1)
11.5 Anticipated Results
205(1)
11.6 Discussion and Commentary
206(3)
11.7 Clinical Notes
209(1)
11.8 5ummary Points
210(1)
References
210(3)
Chapter 12 Ex Vivo Perfusion of Rat Liver Grafts for Hepatocyte Retrieval 213(20)
12.1 Introduction
214(1)
12.2 Experimental Design
214(6)
12.2.1 Systems Requirements
214(6)
12.3 Methods
220(8)
12.3.1 Blood Harvest
220(1)
12.3.2 Liver Harvest
221(1)
12.3.3 Warm Ischemia and Cuffing
222(1)
12.3.4 Liver Perfusion
223(1)
12.3.5 Hepatocyte Isolation of Fresh and Perfused Livers
224(4)
12.4 Data Acquisition
228(1)
12.5 Anticipated Results
228(1)
12.6 Discussion and Commentary
229(1)
12.7 Application Notes
230(1)
12.8 Summary Points
231(1)
Acknowledgments
231(1)
References
231(2)
Chapter 13 Technique of Clinical Vascular Isolation and Perfusion of the Liver 233(18)
13.1 Introduction
234(2)
13.1.1 The Unique Aspects of Arterial and Venous Liver Anatomy
234(1)
13.1.2 Rationale for the Use of IHP in Clinical Oncology
235(1)
13.1.3 History and Initial Clinical Results with IHP
235(1)
13.2 Typical Patient Experience
236(2)
13.3 Materials
238(1)
13.4 Methods
239(7)
13.4.1 Surgical Preparation of the Liver for Isolation
239(1)
13.4.2 Establishment of the Isolated Hepatic Perfusion Circuit
240(3)
13.4.3 Operation of the Isolated Perfusion Circuit and Leak Monitoring
243(2)
13.4.4 Establishment of the Normal Liver Perfusion and Termination of the Procedure
245(1)
13.5 Data Acquisition, Interpretation, and Patient Management During Perfusion
246(1)
13.6 Anticipated Results
246(1)
13.7 Discussion and Commentary
247(1)
13.8 Application Notes
248(1)
13.9 Summary Points
248(1)
References
248(3)
About the Editors 251(2)
Index 253
Korkut Uygun is the leader of the Organ Engineering Group at Massachusetts General Hospital, where he was instrumental in developing a technique that promises to allow growth of transplantable replacement livers. Dr. Uygun received his Ph.D. in chemical engineering from Wayne State University. Charles Y. Lee is an associate professor in the Department of Medical Engineering at the University of North Carolina, Charlotte. Dr. Lee earned his Ph.D. in mechanical engineering from the University of California, Berkeley.