Muutke küpsiste eelistusi

E-raamat: Methods for Phase Diagram Determination

Edited by (Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-May-2011
  • Kirjastus: Elsevier Science Ltd
  • Keel: eng
  • ISBN-13: 9780080549965
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 185,25 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 05-May-2011
  • Kirjastus: Elsevier Science Ltd
  • Keel: eng
  • ISBN-13: 9780080549965
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Phase diagrams are "maps" materials scientists often use to design new materials. They define what compounds and solutions are formed and their respective compositions and amounts when several elements are mixed together under a certain temperature and pressure. This monograph is the most comprehensive reference book on experimental methods for phase diagram determination. It covers a wide range of methods that have been used to determine phase diagrams of metals, ceramics, slags, and hydrides.

* Extensive discussion on methodologies of experimental measurements and data assessments
* Written by experts around the world, covering both traditional and combinatorial methodologies
* A must-read for experimental measurements of phase diagrams

Muu info

This reference work features experimental methods of phase diagram determination - covering metals, ceramics, slags, and hydrides
Preface vii
1 Introduction to Phase Diagrams
1
John F. Smith
1 Introduction
1
2 J. Willard Gibbs and the First Equilibrium Diagram
3
3 Twentieth Century Developments
5
4 The CALPHAD Method and Its Need for Data
8
5 Thermodynamic Constraints on Phase Diagrams
10
6 Experimental Considerations
17
2 The Role of Phase Transformation Kinetics in Phase Diagram Determination and Assessment
22
J.-C. Zhao
1 Introduction
22
2 Phase Transformation Kinetics During Cooling and Heating as Related to Phase Diagram Determination
24
2.1 Shifting of Transformation-Start Temperature with Cooling Rate
26
2.2 Formation of Metastable Phases During Cooling
27
2.3 Shifting of Transformation-Start Temperature with Heating Rate
30
2.4 Analyses of Examples from Cooling and Heating Experiments
35
3 Isothermal Phase Transformation Kinetics as Related to Phase Diagram Determination
41
3.1 Precipitation of Phases from Quenched Alloys
41
3.2 Kinetics and Phase Formation in Diffusion Couples/Multiples
46
4 Concluding Remarks
48
3 Correct and Incorrect Phase Diagram Features
51
Hiroaki Okamoto and Thaddeus B. Massalski
1 Introduction
52
2 Phase Rule Violations
53
2.1 Typical Phase Rule Violations
53
3 Guidelines for Finding Less Obvious Phase Diagram Errors
56
3.1 Problems Connected with Phase Boundary Curvatures
56
3.2 Summary of Improbable Phase Diagram Situations
57
3.3 Van't Hoff Relationship and Charles' Law
59
3.4 Form of the Liquidus of a Compound Near a Pure Element Side
61
3.5 Sharpness of the Liquidus of a Compound and its Relation to a Possible Eutectoid Temperature
63
3.6 Two Compounds with Very Similar Compositions Are Unlikely to Coexist in a Wide Temperature Range
65
3.7 Asymmetry of the Liquidus Around the Melting Point of a Compound
65
3.8 Narrowing of the Width of a Two-Phase Field When the Boundaries Are Extrapolated Toward Higher Temperatures
68
3.9 An Abrupt Change of Slope
70
3.10 An Excessive Slope Change Associated with a Polymorphic Transformation
72
3.11 Shape of a Miscibility Gap
73
3.12 Displaced Miscibility Gap
74
3.13 An Inverse Miscibility Gap
76
3.14 Almost Symmetric Syntectic Reaction
76
3.15 Metastable Melting Point of a Pure Element
77
4 Examples of Phase Diagrams with Improbable Features
79
4.1 Ag–Pr
80
4.2 Al–B
80
4.3 Al–Mn
82
4.4 Al–Pu
82
4.5 Al–Se
83
4.6 Au–La
83
4.7 Au–U
84
4.8 B–Bi
86
4.9 B–W
86
4.10 C–Ge
87
4.11 Ca–Eu
87
4.12 Ce–Pr
87
4.13 Cr–Ni
89
4.14 Cu–Hf
90
4.15 Ir–Rh
92
4.16 Lu–Th
92
4.17 Mg–Sb
92
4.18 Mn–Y
94
4.19 Mo–Ru
94
4.20 Nd–Pu
96
4.21 Ni–Sr
96
4.22 Np–Zr
97
4.23 Pd–Zr
97
4.24 Pt–Zr
99
5 Unusual but Correct Phase Diagrams
100
5.1 Apparent Four-Phase Equilibrium
100
5.2 Apparent Five-Phase Equilibrium
100
5.3 Pointed Liquidus
102
5.4 A Straight Line Liquidus
102
5.5 Off-Stoichiometric Melting
104
6 Phase Diagram Below 0°C
105
7 Conclusion
105
4 Determination of Phase Diagrams Using Equilibrated Alloys
108
Yong Zhong Zhan, Yong Du and Ying Hong Zhuang
1 Introduction
108
2 Alloy Preparation
109
2.1 High-Temperature Melting of Alloys
109
2.2 Arc Melting
110
2.3 Induction Melting
111
2.4 Powder Metallurgy Method
112
3 Homogenization Heat Treatment
113
4 Determination of Phase Equilibria: Isothermal Experiments vs. Cooling/Heating Experiments
114
4.1 Analysis of Quenched Samples to Construct Isothermal Sections (Static Method)
115
4.2 Analysis of Samples by Heating and Cooling Experiments to Construct Vertical Sections and Liquid Projections (Dynamic Method)
122
5 Examples of Phase Diagram Determination Using Equilibrated Alloys
129
5.1 The Cu–Nd Binary System
130
5.2 The Al–Be–Si Ternary System
131
5.3 The Al–Mn–Si Ternary System
135
5.4 Multicomponent Phase Diagram and the Al–C–Si–Ti System
137
6 Crystal Structure Identification of New Phases
140
7 Pitfalls
145
7.1 Verification of the Establishment of True Equilibrium
145
7.2 Inconsistency Between the Result from DTA Measurement and that from XRD and Microscopy Observation
147
7.3 Identification of Degenerated Phase Equilibrium
148
5 DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing
151
William J. Boettinger, Ursula R. Kattner, Kil-Won Moon and John H. Perepezko
1 Introduction
152
1.1 Focus of this
Chapter
152
1.2 Information Sought from DTA/Heat-Flux DSC Measurements
153
1.3 Relevant Standards
154
1.4 Major Points
155
2 Instruments and Operation
155
2.1 Variations Among Instruments
155
2.2 Samples
159
2.3 Reference Materials
164
2.4 Calibration and DTA Signal from Pure Metals
164
2.5 Major Points
169
3 Analysis of DTA Data for Binary Alloys
170
3.1 General Behavior for a Binary Eutectic System: Example Ag–Cu Alloy Melting
171
3.2 Problems with Solidus Determination on Heating
176
3.3 Problems with Liquidus Determination on Heating
180
3.4 Supercooling Problem with Liquidus Determination on Cooling
186
3.5 Eutectic Reactions vs. Peritectic Reactions
191
3.6 Major Points
192
4 Analysis of DTA Data for Ternary Alloys
194
4.1 Al-Rich Corner of Al–Cu–Fe Phase Diagram
194
4.2 Al-20% Cu–0.5% Fe
195
4.3 Al-6% Cu–0.5% Fe
197
4.4 Major Points
198
5 Concluding Remarks
198
Appendix A Glossary
201
Appendix B Recommended Reading
204
Appendix C Model for Simulating DTA Response for Melting and Solidification of Materials with Known or Assumed Enthalpy vs. Temperature Relations. Also Method for Determining Thermal Lag Time Constants of DTA/DSC Instruments
205
Appendix D Expressions for the Rate Dependence of Melting Onset Temperatures for a Pure Metal
205
Appendix E Enthalpy vs. Temperature Relations for Dilute Binary Solid Solution Alloy
211
Appendix F Binary Phase Diagrams and DTA Response
213
Appendix G Tutorial on Melting and Freezing of Multicomponent Alloys
213
G.1 Aluminum Alloy 2219
213
G.2 Udimet 700
218
6 Application of Diffusion Couples in Phase Diagram Determination
222
A.A. Kodentsov, Guillaume F. Bastin and Frans J.J. van Loo
1 Introduction
222
2 General Principles of the Diffusion Couple Method
223
3 Experimental Procedures
225
3.1 Preparation of Diffusion Couples
225
3.2 Analytical Techniques and Specimen Preparation
226
3.3 Preparation of Diffusion Couple Specimens for EPMA
227
4 Variations of the Diffusion Couple Technique
228
5 Error Sources Encountered in the Diffusion Couple Experiments
236
6 Concluding Remarks
244
7 Phase Diagram Determination Using Diffusion Multiples
246
J.-C. Zhao
1 Introduction
246
2 Diffusion-Multiple Fabrication
248
3 Analysis of Diffusion Multiples and Extraction of Phase Diagram Data
256
3.1 Imaging Examination and Phase Analysis
256
3.2 EPMA Profiling
257
3.3 Extraction of Equilibrium Tie Lines
259
4 Sources of Errors
266
5 Concluding Remarks
269
8 Application of Computational Thermodynamics to Rapidly Determine Multicomponent Phase Diagrams
273
Y. Austin Chang and Ying Yang
1 Introduction
273
2 Ternary Mg—Al—Sr System
275
2.1 Experimental Method
276
2.2 Thermodynamic Models
276
2.3 Experimental Results and Discussion
277
3 Quaternary Mo—Si—B—Ti System
282
4 Concluding Remarks
289
9 Determination of Phase Diagrams with Reactive or Volatile Elements
292
Cezary Guminski
1 Introduction
293
2 Solid–Solid Equilibria
299
2.1 Thermal Analysis
299
2.2 Zone Melting
300
2.3 Microstructural Analysis of Quenched Samples
301
2.4 X-Ray Diffraction
302
2.5 Densitometry
302
2.6 Dilatometry
303
2.7 Interdiffusion
303
2.8 Hardness
304
2.9 Calorimetry
304
2.10 Electrical Resistivity
305
2.11 Superconductivity
305
2.12 Electromotive Force
306
2.13 Coulometric Titration
307
2.14 Galvanic Polarization
309
2.15 Magnetic Susceptibility
310
2.16 Vapor Pressure
311
2.17 Gaseous Thermal Extraction
314
3 Solid–Liquid Equilibria
315
3.1 Weight Loss of a Solid After Equilibration with a Liquid
315
3.2 Chemical Analysis of a Separated Liquid
316
3.3 Chemical Analysis of Quenched Samples
318
3.4 Thermal Analysis
319
3.5 Electromotive Force
320
3.6 Electrical Resistivity
321
3.7 Anodic Oxidation
321
3.8 Magnetic Susceptibility
323
3.9 Densitometry
325
3.10 Enthalpy of Dilution
325
3.11 Kinetics of Alloy Decomposition or Formation
325
3.12 Diffusion Coefficient
327
3.13 Vapor Pressure
327
3.14 X-Ray Absorption Spectrometry
328
3.15 Viscosity
328
3.16 Optical Reflectivity
328
3.17 Corrosion Tests
328
3.18 Motion of Liquid Metal Inclusions in Ionic Crystals
330
4 Liquid—Liquid Equilibria
330
4.1 Chemical Analysis of Separated Liquids
330
4.2 Thermal Analysis
330
4.3 Calorimetry
331
4.4 Densitometry by X-Ray Attenuation
332
4.5 Neutron Transmission
332
4.6 Electromotive Force
332
4.7 Electrical Resistivity
332
4.8 Magnetic Susceptibility
333
4.9 Vapor Pressure
333
5 Solid—Vapor Equilibria
334
5.1 Vapor Pressure
334
5.2 Thermogravimetry
335
6 Liquid—Vapor Equilibria
336
6.1 Vapor Pressure
336
7 Liquid—Fluid Equilibria
337
8 Concluding Remarks
337
10 Phase Diagram Determination of Ceramic Systems 341
Doreen Edwards
1 Introduction
341
2 Ex Situ Methods
342
2.1 Sample Preparation and Equilibration
343
2.2 Phase and Compositional Analysis
350
2.3 Identification of New Phases
354
3 In Situ Methods
354
3.1 Thermal Analysis
355
3.2 Coulometric Titration
356
3.3 High-Temperature X-Ray Diffraction
358
3.4 Thermomicroscopy and Other Optical Techniques
358
3.5 Oscillation Method of Phase Analysis
358
3.6 In Situ Electrical, Dielectric, and Magnetic Measurements
359
4 Concluding Remarks
359
11 Determination of Phase Diagrams Involving Order—Disorder Transitions 361
Ryosuke Kainuma, Ikuo Ohnuma and Kiyohito Ishida
1 Introduction
361
2 ER and Thermal Analysis Methods
362
2.1 ER Method (Resistometric Study)
362
2.2 Thermal Analysis
364
3 Singular Point Method
366
3.1 Origin of Singularity
366
3.2 Examples of SPM
368
4 Concentration Gradient Method
374
4.1 Basics of CGM
376
4.2 Examples of CGM
376
5 Concluding Remarks
380
12 Determination of Phase Diagrams Involving Magnetic Transitions 383
Ichiro Takeuchi and Samuel E. Lofland
1 Introduction
383
2 The Basics of Magnetism and the Traditional Methods of Mapping Magnetic Phase Diagrams
384
2.1 Basics of Magnetism
384
2.2 Measurements of Magnetism
385
2.3 Effects of Magnetism on Phase Diagrams
389
3 Combinatorial and High-Throughput Mapping of Magnetic Phase Diagrams
396
3.1 Introduction to the Combinatorial Approach
396
3.2 Combinatorial Mapping of Magnetic Phase Diagrams in Metallic Systems
396
3.3 Combinatorial Mapping of Oxide Systems
404
4 Concluding Remarks
409
13 Determination of Pressure-Dependent Phase Diagrams 412
Surendra K. Saxena and Yanbin Wang
1 Introduction
412
2 High-Pressure Devices
413
2.1 Diamond-Anvil Cells
413
2.2 Large-Volume Presses
416
3 Pressure Measurement
418
3.1 Pressure Measurement Using Ruby Fluorescence
418
3.2 Pressure Measurement Using X-Rays
419
4 High Pressure and Temperature
421
4.1 X-Rays at High Pressure
421
4.2 Heating at High Pressure in a DAC
422
5 Examples of Phase Diagrams Determined Using LVPs
431
5.1 Phase Relations in Univariant Systems
431
5.2 Phase Relations in Complex Systems
434
6 Phase Diagrams Using DAC
435
7 Industrial Solids
438
14 The Determination of Phase Diagrams for Slag Systems 442
David R. Gaskell
1 Introduction
442
2 The CaO—Al2O3—SiO2 System
443
2.1 The CaO—SiO2 System
443
2.2 The Al2O3—SiO2 System
447
2.3 The CaO—Al2O3—SiO2 System
452
3 The CaO—"FeO"—SiO2 System
453
4 The FeO—Fe2O3—SiO2 System
455
15 Determination of Phase Diagrams for Hydrogen-Containing Systems 459
Ted B. Flanagan and Weifang Luo
1 Introduction
459
2 Phase Diagram Representations of M–H Systems
462
2.1 Binary M–H Systems
462
2.2 Multi-component Systems
466
3 Some Useful Rules Relating Phase Diagrams and Reaction Enthalpies for M–H Systems
471
4 Techniques Employed for Phase Diagram Determination of M–H Systems
473
4.1 Open Systems
474
4.2 Closed Systems
477
4.3 Electron Diffraction and TEM
480
4.4 Magnetic Susceptibility
480
4.5 Electric Resistivity
480
4.6 Dilatometry
480
16 Miscellaneous Topics on Phase Diagrams 483
J.-C. Zhao and Jack H. Westbrook
1 Introduction
483
2 Ever-Increasing Interplay of Modeling and Experiment
484
3 Phase Diagrams for Functional Materials
485
4 High-Throughput Approaches to Phase Diagram Determination
486
5 Low-Temperature Phase Diagrams
487
6 Phase Diagram Determination: A Never-Ending Task
488
7 Some Suggestions
489
Further Reading
490
General Phase Diagram Introduction
490
Specimen Purity and Preparation
490
Diffusion as Related to Phase Diagrams and Phase Diagram Determination
490
Interplay of Ordering, Magnetic Transitions, and Phase Equilibria
491
Ceramic Phase Diagram Determination
491
Theoretical/Modeling Work
491
The CALPHAD Approach
491
Miscellaneous Recommended Papers on Phase Diagram Determination
491
Some Current Phase Diagram Compilations
492
Elemental and Metallic Systems
493
Ceramic Systems
493
Other Miscellaneous Compilations/Books
493
Some Useful Websites
493


Prof. J.-C. Zhao joined the Department of Materials Science and Engineering at The Ohio State University (OSU) in January 2008 after 12 years (1995 to 2007) as a materials scientist and project/team leader at GE Global Research in Niskayuna/Schenectady, NY. He obtained his PhD degree in materials science and engineering from Lehigh University in 1995. His research focuses are on high-throughput materials science methodologies, phase diagrams, computational thermodynamics, diffusion, design of advanced alloys and coatings, and hydrogen storage materials. In addition to many materials innovations, he developed a diffusion-multiple approach and co-developed several associated materials property microscopy tools for accelerated materials discovery and development. Zhao has received several honors including the Geisler Award from ASM International, the Hull Award from GE Global Research and the Lumley Interdisciplinary Research Award from OSU, and was elected a Fellow of ASM International in 2003. He has published about 100 papers and edited/co-edited three books and two theme issues of MRS Bulletin.