Muutke küpsiste eelistusi

E-raamat: Methods of Solving Nonstandard Problems

  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Sep-2015
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783319198873
  • Formaat - PDF+DRM
  • Hind: 43,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 17-Sep-2015
  • Kirjastus: Birkhauser Verlag AG
  • Keel: eng
  • ISBN-13: 9783319198873

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas. It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad.

Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions. The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem. Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems. Over 360 problems are included with hints, answers, and detailed solutions.

Methods of Solving Nonstandard Problems will interest high school and college students, whether they are preparing for a math competition or looking to improve their mathematical skills, as well as anyone who enjoys an intellectual challenge and has a special love for mathematics. Teachers and college professors will be able to use it as an extra resource in the classroom to augment a conventional course of instruction in order to stimulate abstract thinking and inspire original thought.

Arvustused

Students with an interest in problem-solving (particularly students who like to take Olympiad-style contests) will find suggestions, techniques and examples here that will serve them well. Students who are studying, or want to brush up on, basic algebra or trigonometry should also find material of interest here. Instructors of basic algebra, trigonometry, calculus, and even number theory or combinatorics may also find some interesting problems in this book to present to this class either in lecture or as homework. (Mark Hunacek, MAA Reviews, maa.org, December, 2015)

1 Solving Problems Using Properties of Functions
1(48)
1.1 Continuous Functions and Discontinuities
1(11)
1.2 Bounded and Unbounded Functions
12(3)
1.3 Maximum and Minimum of a Function
15(4)
1.4 Even and Odd Functions
19(1)
1.5 Periodic Functions
20(5)
1.6 Summary of Useful Properties and Their Applications
25(11)
1.7 Homework on
Chapter 1
36(13)
2 Polynomials
49(110)
2.1 Introduction to Polynomial Equations: Important Theorems
50(12)
2.2 Quadratic Functions and Quadratic Equations
62(17)
2.2.1 Vieta's Theorem for a Quadratic Equation
64(6)
2.2.2 Interesting Facts About Quadratic Functions and Their Roots
70(9)
2.3 Polynomial Equations in Two or Three Variables
79(20)
2.3.1 Special Products
81(11)
2.3.2 Newton's Binomial Theorem
92(7)
2.4 Biquadratic Equations: Special Substitutions
99(7)
2.5 Symmetric (Recurrent) Polynomial Equations
106(4)
2.5.1 Symmetric Polynomial Equations of Even Degree
106(3)
2.5.2 Symmetric Polynomial Equations of Odd Degree
109(1)
2.6 Cubic Equations
110(25)
2.6.1 Vieta's Theorem for Cubic Equations
110(2)
2.6.2 The Babylonian Approach to Cubic Equations
112(3)
2.6.3 Special Substitutions for Cubic Equations
115(9)
2.6.4 Cardano's Formula for Cubic Equations
124(11)
2.7 Higher Order Equations: Methods of Ferrari and Euler
135(7)
2.7.1 Euler's Method for Solving a Quartic Equation
140(2)
2.8 Miscellaneous Problems on Polynomials
142(5)
2.9 Homework on
Chapter 2
147(12)
3 Problems from Trigonometry
159(80)
3.1 Introduction to the Unit Circle and Trigonometric Identities
160(12)
3.1.1 Introduction to Inverse Trigonometric Functions
164(8)
3.2 Best Methods for Solving Simple Equations and Inequalities
172(14)
3.2.1 Solving cos x = a
172(5)
3.2.2 Solving sinx = a
177(1)
3.2.3 Solving tanx = a and cotx = a
178(2)
3.2.4 Solving Trigonometric Inequalities
180(6)
3.3 Solving Miscellaneous Trigonometric Equations
186(9)
3.3.1 Factoring
187(1)
3.3.2 Rewriting a Product as Sum or Difference
188(1)
3.3.3 Reducing The Degree of Trigonometric Functions
189(1)
3.3.4 Homogeneous Trigonometric Equations
189(5)
3.3.5 Selecting Root Subject to Conditions
194(1)
3.3.6 Completing a Square
195(1)
3.4 Proofs of Some Trigonometric Identities
195(13)
3.4.1 Angle Addition Formulas
196(2)
3.4.2 Double-Angle Formulas
198(5)
3.4.3 Triple Angles and More: Euler--De Moivre's Formulas
203(5)
3.5 Trigonometric Series
208(2)
3.6 Trigonometric Solution of Cubic Equations: Casus Irreducibilis
210(2)
3.7 Parameterized Form of a Curve
212(4)
3.8 Nonstandard Trigonometric Equations and Inequalities
216(8)
3.9 Homework on
Chapter 3
224(15)
4 Unusual and Nonstandard Problems
239(84)
4.1 Problems on Maximum and Minimum
239(20)
4.1.1 Using "Special" Behavior of Functions
240(6)
4.1.2 Using Arithmetic and Geometric Mean
246(4)
4.1.3 Using Other Important Inequalities
250(9)
4.2 Nonstandard Systems and Equations in Two or Three Variables
259(8)
4.3 Geometric Approach to Solving Algebraic Problems
267(6)
4.4 Trigonometric Substitution
273(4)
4.5 Problems with Parameters
277(16)
4.6 Some Word Problems
293(16)
4.6.1 Word Problems Involving Integers
293(10)
4.6.2 Other Word Problems
303(6)
4.7 Homework on
Chapter 4
309(14)
References 323(2)
Index 325
Ellina Grigorieva, PhD, is Professor of Mathematics at Texas Women's University, Denton, TX, USA