Preface |
|
ix | |
|
|
1 | (2) |
|
|
1 | (1) |
|
|
1 | (26) |
|
|
3 | (1) |
|
|
3 | (4) |
|
|
7 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
|
11 | (2) |
|
|
13 | (1) |
|
1.2.3.3 Environments and Scope |
|
|
14 | (2) |
|
|
16 | (3) |
|
1.2.5 Probability Families |
|
|
19 | (3) |
|
|
22 | (1) |
|
1.2.6.1 Conditional Execution |
|
|
23 | (1) |
|
|
23 | (2) |
|
1.2.7 Numerical Optimization |
|
|
25 | (2) |
|
|
27 | (7) |
|
|
27 | (1) |
|
|
28 | (1) |
|
1.3.2.1 Debugging in Batch |
|
|
29 | (1) |
|
1.3.3 Object-Oriented Programming |
|
|
30 | (1) |
|
|
30 | (4) |
|
|
34 | (3) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
37 | (2) |
|
2 Statistics and Likelihood-Based Estimation |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
39 | (2) |
|
2.3 Maximum Likelihood Estimation |
|
|
41 | (8) |
|
|
41 | (4) |
|
|
45 | (1) |
|
2.3.2.1 Exponential Family |
|
|
46 | (1) |
|
|
47 | (2) |
|
|
49 | (7) |
|
|
49 | (1) |
|
2.4.2 Inverting the LRT: Profile Likelihood |
|
|
50 | (2) |
|
2.4.3 Nuisance Parameters |
|
|
52 | (4) |
|
2.5 Simulation for Fun and Profit |
|
|
56 | (3) |
|
2.5.1 Pseudo-Random Number Generators |
|
|
56 | (3) |
|
|
59 | (2) |
|
|
61 | (36) |
|
|
61 | (1) |
|
3.2 Least-Squares Regression |
|
|
62 | (12) |
|
|
64 | (2) |
|
3.2.2 Matrix Representation |
|
|
66 | (3) |
|
|
69 | (2) |
|
|
71 | (3) |
|
3.3 Maximum-Likelihood Regression |
|
|
74 | (2) |
|
|
76 | (18) |
|
3.4.1 Easing Model Specification |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
3.4.4 Initializing the Search |
|
|
78 | (1) |
|
3.4.5 Making Failure Informative |
|
|
79 | (1) |
|
3.4.6 Reporting Asymptotic SE and CI |
|
|
79 | (1) |
|
3.4.7 The Regression Function |
|
|
80 | (2) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (2) |
|
|
87 | (2) |
|
3.4.8.6 Presenting a Summary |
|
|
89 | (2) |
|
|
91 | (3) |
|
|
94 | (1) |
|
|
94 | (1) |
|
|
94 | (3) |
|
4 Generalized Linear Models |
|
|
97 | (48) |
|
|
97 | (2) |
|
4.2 GLM: Families and Terms |
|
|
99 | (3) |
|
4.3 The Exponential Family |
|
|
102 | (2) |
|
4.4 The IRLS Fitting Algorithm |
|
|
104 | (1) |
|
4.5 Bernoulli or Binary Logistic Regression |
|
|
105 | (9) |
|
|
111 | (3) |
|
4.6 Grouped Binomial Models |
|
|
114 | (6) |
|
4.7 Constructing a GLM Function |
|
|
120 | (9) |
|
|
125 | (3) |
|
4.7.2 Other Link Function |
|
|
128 | (1) |
|
4.8 GLM Negative Binomial Model |
|
|
129 | (4) |
|
|
133 | (3) |
|
4.10 Dispersion, Over- and Under- |
|
|
136 | (3) |
|
4.11 Goodness-of-Fit and Residual Analysis |
|
|
139 | (4) |
|
|
139 | (2) |
|
|
141 | (2) |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
5 Maximum Likelihood Estimation |
|
|
145 | (32) |
|
|
145 | (1) |
|
|
146 | (14) |
|
|
146 | (2) |
|
5.2.2 Parameter Estimation |
|
|
148 | (1) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
5.2.6 Printing the Object |
|
|
151 | (2) |
|
|
153 | (4) |
|
5.2.8 Fitting for a New Family |
|
|
157 | (3) |
|
|
160 | (16) |
|
|
160 | (2) |
|
5.3.2 Parameter Estimation |
|
|
162 | (1) |
|
5.3.3 Deviance and Deviance Residuals |
|
|
163 | (2) |
|
|
165 | (1) |
|
5.3.5 Printing and Summarizing the Object |
|
|
165 | (1) |
|
|
165 | (6) |
|
5.3.7 Building on the Model |
|
|
171 | (2) |
|
5.3.8 Fitting for a New Family |
|
|
173 | (3) |
|
|
176 | (1) |
|
|
177 | (26) |
|
6.1 What Is a Panel Model? |
|
|
177 | (4) |
|
6.1.1 Fixed- or Random-Effects Models |
|
|
181 | (1) |
|
|
181 | (7) |
|
6.2.1 Unconditional Fixed-Effects Models |
|
|
181 | (2) |
|
6.2.2 Conditional Fixed-Effects Models |
|
|
183 | (2) |
|
6.2.3 Coding a Conditional Fixed-Effects Negative Binomial |
|
|
185 | (3) |
|
6.3 Random-Intercept Model |
|
|
188 | (6) |
|
6.3.1 Random-Effects Models |
|
|
188 | (3) |
|
6.3.2 Coding a Random-Intercept Gaussian Model |
|
|
191 | (3) |
|
6.4 Handling More Advanced Models |
|
|
194 | (1) |
|
|
194 | (7) |
|
|
196 | (1) |
|
6.5.2 The Random-Intercept Model |
|
|
197 | (4) |
|
|
201 | (1) |
|
|
202 | (1) |
|
7 Model Estimation Using Simulation |
|
|
203 | (30) |
|
7.1 Simulation: Why and When? |
|
|
203 | (2) |
|
7.2 Synthetic Statistical Models |
|
|
205 | (14) |
|
7.2.1 Developing Synthetic Models |
|
|
205 | (4) |
|
7.2.2 Monte Carlo Estimation |
|
|
209 | (7) |
|
7.2.3 Reference Distributions |
|
|
216 | (3) |
|
7.3 Bayesian Parameter Estimation |
|
|
219 | (11) |
|
|
229 | (1) |
|
|
230 | (1) |
|
|
231 | (2) |
Bibliography |
|
233 | (6) |
Index |
|
239 | |