Muutke küpsiste eelistusi

E-raamat: Metric Spaces: A Companion to Analysis

  • Formaat - EPUB+DRM
  • Hind: 37,04 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook presents the theory of Metric Spaces necessary for studying analysis beyond one real variable. Rich in examples, exercises and motivation, it provides a careful and clear exposition at a pace appropriate to the material.

The book covers the main topics of metric space theory that the student of analysis is likely to need. Starting with an overview defining the principal examples of metric spaces in analysis (chapter 1), it turns to the basic theory (chapter 2) covering open and closed sets, convergence, completeness and continuity (including a treatment of continuous linear mappings). There is also a brief dive into general topology, showing how metric spaces fit into a wider theory. The following chapter is devoted to proving the completeness of the classical spaces. The text then embarks on a study of spaces with important special properties. Compact spaces, separable spaces, complete spaces and connected spaces each have a chapter devoted to them. A particular feature of the book is the occasional excursion into analysis. Examples include the Mazur–Ulam theorem, Picard’s theorem on existence of solutions to ordinary differential equations, and space filling curves.

This text will be useful to all undergraduate students of mathematics, especially those who require metric space concepts for topics such as multivariate analysis, differential equations, complex analysis, functional analysis, and topology. It includes a large number of exercises, varying from routine to challenging. The prerequisites are a first course in real analysis of one real variable, an acquaintance with set theory, and some experience with rigorous proofs.

Arvustused

I would enthusiastically recommend this book for a student who has already taken a basic real analysis course . I think it is a real winner. It is very approachable and well-paced its exercises are well thought out; and through its excursions and exposition, it gives the reader a solid foundation in metric space theory, with an understanding of where this theory sits within the broader fields of topology and analysis. (John Ross, MAA Reviews, February 19, 2023)

- 1. Metric Spaces. - 2. Basic Theory of Metric Spaces. -
3. Completeness of the Classical Spaces. - 4. Compact Spaces. - 5. Separable
Spaces. - 6. Properties of Complete Spaces. - 7. Connected Spaces.
- Afterword.
Robert Magnus was born in the UK and studied mathematics at the Universities of Cambridge and Sussex. He has taught nearly all subjects associated with analysis and has published papers in the areas of bifurcation theory, catastrophe theory, analytic operator functions and nonlinear partial differential equations. Since 1977 he has lived and worked in Iceland.