|
Methods of Moments for Single Linear Equation Models |
|
|
1 | (52) |
|
Least Squares Estimator (LSE) |
|
|
1 | (16) |
|
LSE as a Method of Moment (MOM) |
|
|
1 | (1) |
|
|
1 | (1) |
|
LSE and Moment Conditions |
|
|
2 | (1) |
|
Zero Moments and Independence |
|
|
3 | (1) |
|
Asymptotic Properties of LSE |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
LSE Asymptotic Distribution |
|
|
7 | (1) |
|
Matrices and Linear Projection |
|
|
8 | (2) |
|
|
10 | (3) |
|
|
13 | (2) |
|
|
15 | (2) |
|
Heteroskedasticity and Homoskedasticity |
|
|
17 | (8) |
|
Heteroskedasticity Sources |
|
|
18 | (1) |
|
Forms of Heteroskedasticity |
|
|
18 | (1) |
|
Heteroskedasticity due to Aggregation |
|
|
19 | (1) |
|
|
20 | (1) |
|
Analysis of Variance (Anova) |
|
|
21 | (2) |
|
|
23 | (1) |
|
Heteroskedasticity Examples |
|
|
24 | (1) |
|
Testing Linear Hypotheses |
|
|
25 | (6) |
|
|
25 | (2) |
|
|
27 | (1) |
|
|
28 | (3) |
|
Instrumental Variable Estimator (IVE) |
|
|
31 | (11) |
|
|
31 | (1) |
|
|
31 | (1) |
|
Instrumental Variable (IV) qualifications |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
35 | (4) |
|
IVE with More than Enough Instruments |
|
|
39 | (1) |
|
|
39 | (1) |
|
Various Interpretations of IVE |
|
|
40 | (1) |
|
|
41 | (1) |
|
Generalized Method-of-Moment Estimator (GMM) |
|
|
42 | (6) |
|
|
43 | (1) |
|
|
44 | (2) |
|
|
46 | (2) |
|
Generalized Least Squares Estimator (GLS) |
|
|
48 | (5) |
|
|
48 | (1) |
|
|
49 | (1) |
|
Efficiency of LSE, GLS, and GMM |
|
|
50 | (3) |
|
Methods of Moments for Multiple Linear Equation Systems |
|
|
53 | (38) |
|
|
53 | (13) |
|
|
53 | (1) |
|
Multiple Linear Equations |
|
|
53 | (1) |
|
System LSE and Motivation |
|
|
54 | (1) |
|
|
55 | (1) |
|
System IVE and Rank Condition |
|
|
56 | (1) |
|
|
56 | (1) |
|
System IVE and Separate IVE |
|
|
57 | (2) |
|
Identification Conditions |
|
|
59 | (1) |
|
System GMM and Link to Panel Data |
|
|
60 | (1) |
|
|
60 | (2) |
|
System GMM and Panel Data |
|
|
62 | (4) |
|
Simultaneous Equations and Identification |
|
|
66 | (9) |
|
Relationship Between Endogenous Variables |
|
|
66 | (2) |
|
Conventional Approach to Rank Condition |
|
|
68 | (1) |
|
Simpler Approach to Rank Condition |
|
|
69 | (2) |
|
Avoiding Arbitrary Exclusion Restrictions |
|
|
71 | (1) |
|
|
71 | (1) |
|
Patterns in Reduced-Form Ratios |
|
|
72 | (2) |
|
Meaning of Singular Systems |
|
|
74 | (1) |
|
Methods of Moments for Panel Data |
|
|
75 | (16) |
|
|
76 | (1) |
|
Typical Panel Data Layout |
|
|
76 | (2) |
|
Panel Model with a Cross-Section Look |
|
|
78 | (1) |
|
|
79 | (2) |
|
Panel GMM and Constructing Instruments |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
Specific Examples of Instruments |
|
|
82 | (2) |
|
Within-Group and Between-Group Estimators |
|
|
84 | (1) |
|
Within Group Estimator (WIT) |
|
|
84 | (2) |
|
Between Group Estimator (BET) and Panel LSE and GLS |
|
|
86 | (1) |
|
WIT as Fixed-Effect Estimator |
|
|
87 | (4) |
|
M-Estimator and Maximum Likelihood Estimator (MLE) |
|
|
91 | (42) |
|
|
91 | (5) |
|
Four Issues and Main Points |
|
|
91 | (1) |
|
Remarks for Asymptotic Distribution |
|
|
92 | (3) |
|
|
95 | (1) |
|
Maximum Likelihood Estimator (MLE) |
|
|
96 | (6) |
|
|
97 | (2) |
|
|
99 | (1) |
|
Asymptotic Variance Relative to M-estimator |
|
|
100 | (2) |
|
M-Estimator with Nuisance Parameters |
|
|
102 | (6) |
|
Two-Stage M-Estimator Basics |
|
|
102 | (1) |
|
Influence Function and Correction Term |
|
|
103 | (2) |
|
Various Forms of Asymptotic Variances |
|
|
105 | (1) |
|
Examples of Two-Stage M-Estimators |
|
|
106 | (1) |
|
|
106 | (2) |
|
|
108 | (1) |
|
Method-of-Moment Tests (MMT) |
|
|
108 | (4) |
|
|
108 | (1) |
|
|
109 | (3) |
|
|
112 | (1) |
|
Tests Comparing Two Estimators |
|
|
112 | (5) |
|
Two Estimators for the Same Parameter |
|
|
113 | (2) |
|
Two Estimators for the Same Variance |
|
|
115 | (2) |
|
|
117 | (10) |
|
Wald Test and Nonlinear Hypotheses |
|
|
118 | (1) |
|
Likelihood Ratio (LR) Test |
|
|
119 | (1) |
|
|
119 | (2) |
|
Restricted MLE and LR Test |
|
|
121 | (1) |
|
Score (LM) Test and Effective Score Test |
|
|
122 | (2) |
|
Further Remarks and an Empirical Example |
|
|
124 | (3) |
|
Numerical Optimization and One-Step Efficient Estimation |
|
|
127 | (6) |
|
Newton--Raphson Algorithm |
|
|
127 | (2) |
|
Newton--Raphson Variants and Other Methods |
|
|
129 | (2) |
|
One-Step Efficient Estimation |
|
|
131 | (2) |
|
Nonlinear Models and Estimators |
|
|
133 | (44) |
|
Nonlinear Least Squares Estimator (NLS) |
|
|
133 | (12) |
|
|
134 | (1) |
|
|
134 | (1) |
|
Transformation-of-Variable Models |
|
|
135 | (1) |
|
Mean, Median, and More Nonlinear Models |
|
|
136 | (2) |
|
NLS and Its Asymptotic Properties |
|
|
138 | (3) |
|
|
141 | (2) |
|
|
143 | (1) |
|
NLS-LM Test for Linear Models |
|
|
144 | (1) |
|
Quantile and Mode Regression |
|
|
145 | (11) |
|
|
146 | (1) |
|
|
147 | (1) |
|
Asymmetric Absolute Loss and Quantile Function |
|
|
147 | (3) |
|
Quantile Regression Estimator |
|
|
150 | (1) |
|
|
151 | (2) |
|
|
153 | (1) |
|
|
154 | (2) |
|
|
156 | (12) |
|
GMM for Single Nonlinear Equation |
|
|
157 | (2) |
|
Implementation and Examples |
|
|
159 | (4) |
|
|
163 | (1) |
|
|
164 | (1) |
|
Weighting Matrices for Dependent Data |
|
|
165 | (1) |
|
GMM for Multiple Nonlinear Equations |
|
|
166 | (2) |
|
Minimum Distance Estimation (MDE) |
|
|
168 | (9) |
|
|
169 | (2) |
|
|
171 | (3) |
|
An Empirical Example from Panel Data |
|
|
174 | (3) |
|
Parametric Methods for Single Equation LDV Models |
|
|
177 | (52) |
|
|
177 | (12) |
|
|
177 | (2) |
|
|
179 | (4) |
|
|
183 | (2) |
|
Willingness to Pay and Treatment Effect |
|
|
185 | (1) |
|
|
185 | (2) |
|
Remarks for WTP Estimation |
|
|
187 | (1) |
|
Comparison to Treatment Effect |
|
|
188 | (1) |
|
Ordered Discrete Response |
|
|
189 | (9) |
|
|
189 | (2) |
|
Digression on Re-parametrization in MLE |
|
|
191 | (1) |
|
|
192 | (2) |
|
An Empirical Example: Contingent Valuation |
|
|
194 | (4) |
|
|
198 | (8) |
|
|
198 | (2) |
|
Poisson Over-dispersion Problem and Other Estimators |
|
|
200 | (1) |
|
Negative Binomial (NB) MLE |
|
|
200 | (2) |
|
Zero-Inflated Count Responses |
|
|
202 | (1) |
|
|
202 | (1) |
|
An Empirical Example: Inequality Effect on Crime |
|
|
203 | (1) |
|
IVE for Count or Positive Responses |
|
|
204 | (2) |
|
Censored Response and Related LDV Models |
|
|
206 | (10) |
|
|
206 | (2) |
|
|
208 | (2) |
|
Truncated Regression and Fractional Response |
|
|
210 | (1) |
|
Marginal Effects for Censored/Selection Models |
|
|
211 | (2) |
|
|
213 | (3) |
|
Parametric Estimators for Duration |
|
|
216 | (13) |
|
|
216 | (1) |
|
Survival and Hazard Functions |
|
|
216 | (2) |
|
|
218 | (1) |
|
Exponential Distribution for Duration |
|
|
219 | (2) |
|
Weibull Distribution for Duration |
|
|
221 | (2) |
|
Unobserved Heterogeneity and Other Parametric Hazards |
|
|
223 | (2) |
|
Invariances and Extreme Value Distributions |
|
|
225 | (4) |
|
Parametric Methods for Multiple Equation LDV Models |
|
|
229 | (74) |
|
Multinomial Choice Models |
|
|
229 | (15) |
|
|
230 | (1) |
|
|
231 | (1) |
|
Choice Probabilities and Identified Parameters |
|
|
231 | (2) |
|
Log-Likelihood Function and MOM |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
Choice Probabilities and Implications |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
238 | (1) |
|
An Empirical Example: Presidential Election |
|
|
239 | (3) |
|
|
242 | (2) |
|
Methods of Simulated Moments (MSM) |
|
|
244 | (8) |
|
Basic Idea with Frequency Simulator |
|
|
244 | (3) |
|
|
247 | (3) |
|
Methods of Simulated Likelihood (MSL) |
|
|
250 | (2) |
|
|
252 | (17) |
|
|
253 | (2) |
|
Selection Addition, Bias, and Correction Terms |
|
|
255 | (2) |
|
|
257 | (1) |
|
|
258 | (4) |
|
Selection Models for Some LDV's |
|
|
262 | (1) |
|
Binary-Response Selection MLE |
|
|
262 | (3) |
|
Count-Response Zero-Inflated MLE |
|
|
265 | (1) |
|
Count-Response Selection MOM |
|
|
266 | (1) |
|
Double and Multiple Hurdle Models |
|
|
267 | (2) |
|
LDV's with Endogenous Regressors |
|
|
269 | (16) |
|
Five Ways to Deal with Endogenous LDV's |
|
|
270 | (3) |
|
|
273 | (2) |
|
Simultaneous Systems in LDV's and Coherency Conditions |
|
|
275 | (1) |
|
Incoherent System in Binary Responses |
|
|
275 | (1) |
|
Coherent System in Censored Responses |
|
|
275 | (2) |
|
Control Function Approach with a Censored Response |
|
|
277 | (1) |
|
Simultaneous Systems in Latent Continuous Variables |
|
|
278 | (1) |
|
Motivations and Justifications |
|
|
278 | (2) |
|
Individual RF-Based Approach with MDE |
|
|
280 | (3) |
|
|
283 | (2) |
|
Panel-Data Binary-Response Models |
|
|
285 | (11) |
|
|
285 | (1) |
|
Two Periods with Time-Varying Intercept |
|
|
286 | (2) |
|
|
288 | (1) |
|
Digression on Sufficiency |
|
|
289 | (2) |
|
Unrelated-Effect Panel Probit |
|
|
291 | (2) |
|
|
293 | (3) |
|
|
296 | (7) |
|
Observed Causes and Durations |
|
|
296 | (2) |
|
Latent Causes and Durations |
|
|
298 | (2) |
|
Dependent Latent Durations and Identification |
|
|
300 | (3) |
|
Kernel Nonparametric Estimation |
|
|
303 | (60) |
|
|
303 | (10) |
|
|
303 | (4) |
|
Density-Derivative Estimators |
|
|
307 | (2) |
|
|
309 | (3) |
|
Adaptive Kernel Estimator |
|
|
312 | (1) |
|
Consistency and Bandwidth Choice |
|
|
313 | (9) |
|
|
313 | (3) |
|
|
316 | (2) |
|
Choosing Bandwidth with MSE |
|
|
318 | (2) |
|
Choosing Bandwidth with Cross-Validation |
|
|
320 | (2) |
|
|
322 | (7) |
|
|
323 | (1) |
|
|
324 | (2) |
|
|
326 | (1) |
|
An Empirical Example of Confidence Bands |
|
|
327 | (2) |
|
|
329 | (4) |
|
|
329 | (1) |
|
|
330 | (2) |
|
An Empirical Example: World Income Distribution |
|
|
332 | (1) |
|
Survival and Hazard Under Random Right-Censoring |
|
|
333 | (11) |
|
Nelson--Aalen Cumulative-Hazard Estimator |
|
|
333 | (3) |
|
Survival-Function Estimators |
|
|
336 | (1) |
|
Cumulative-Hazard-Based Estimator |
|
|
336 | (2) |
|
Kaplan--Meier Product Limit Estimator |
|
|
338 | (2) |
|
Density and Hazard Estimators |
|
|
340 | (1) |
|
|
340 | (2) |
|
|
342 | (2) |
|
Kernel Nonparametric Regression |
|
|
344 | (9) |
|
|
344 | (3) |
|
|
347 | (1) |
|
|
348 | (2) |
|
Choosing Smoothing Parameter and Kernel |
|
|
350 | (3) |
|
Topics in Kernel Nonparametric Regression |
|
|
353 | (10) |
|
Mixed Regressors and Structural Breaks |
|
|
353 | (3) |
|
|
356 | (3) |
|
Nonparameric MLE and Quantile Regression |
|
|
359 | (1) |
|
|
360 | (3) |
|
Bandwidth-Free Semiparametric Methods |
|
|
363 | (78) |
|
Quantile Regression for LDV models |
|
|
363 | (20) |
|
Binary and Multinomial Responses |
|
|
364 | (3) |
|
Ordered Discrete Responses |
|
|
367 | (2) |
|
|
369 | (1) |
|
|
369 | (2) |
|
Quantile Regression of a Transformed Variable |
|
|
371 | (1) |
|
|
372 | (1) |
|
|
373 | (1) |
|
Censored Quantile Estimators |
|
|
373 | (2) |
|
Two-Stage Procedures and Unobserved Censoring Point |
|
|
375 | (4) |
|
|
379 | (2) |
|
Median Rational Expectation |
|
|
381 | (2) |
|
Methods Based on Modality and Symmetry |
|
|
383 | (14) |
|
Mode Regression for Truncated Model and Robustness |
|
|
384 | (2) |
|
Symmetrized LSE for Truncated and Censored Models |
|
|
386 | (1) |
|
Symmetrically Trimmed LSE |
|
|
386 | (2) |
|
Symmetrically Censored LSE |
|
|
388 | (1) |
|
Partial-Symmetry-Based Estimators |
|
|
389 | (1) |
|
Quadratic Mode Regression Estimator (QME) |
|
|
389 | (2) |
|
|
391 | (2) |
|
Winsorized Mean Estimator (WME) |
|
|
393 | (3) |
|
Estimators for Censored-Selection Models |
|
|
396 | (1) |
|
|
397 | (18) |
|
Single Index Models (SIM) |
|
|
398 | (1) |
|
Single Index and Transformation of Variables |
|
|
398 | (1) |
|
Simple Single-Index Model Estimator |
|
|
399 | (1) |
|
Double or Multiple Indices |
|
|
400 | (1) |
|
Kendall Rank Correlation Estimator (KRE) |
|
|
401 | (1) |
|
Estimator and Identification |
|
|
402 | (2) |
|
|
404 | (2) |
|
Randomly Censored Duration with Unknown Transformation |
|
|
406 | (2) |
|
Spearman Rank Correlation Estimator (SRE) |
|
|
408 | (2) |
|
Pairwise-Difference Rank for Response Transformations |
|
|
410 | (1) |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
412 | (1) |
|
Rank-Based Estimation of Transformation Function |
|
|
413 | (2) |
|
Differencing-Based Estimators |
|
|
415 | (6) |
|
Pairwise-Difference for Censored and Truncated Models |
|
|
415 | (1) |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
417 | (1) |
|
Differencing Estimator for Semi-linear Models |
|
|
418 | (3) |
|
Estimators for Duration Models |
|
|
421 | (10) |
|
|
421 | (3) |
|
Piecewise Constant Hazard |
|
|
424 | (1) |
|
Discrete-Time-Varying Regressors |
|
|
424 | (1) |
|
Ordered Discrete Response Model for Time-Constant Regressors |
|
|
425 | (3) |
|
|
428 | (1) |
|
Partial Likelihood Estimator (PLE) |
|
|
429 | (2) |
|
Integrated-Moment Specification Tests |
|
|
431 | (10) |
|
Integrated Moment Tests (IMT) |
|
|
432 | (2) |
|
Integrated Regression Function Specification Test |
|
|
434 | (1) |
|
|
434 | (1) |
|
|
435 | (2) |
|
|
437 | (1) |
|
Conditional Kolmogorov Test |
|
|
437 | (4) |
|
Bandwidth-Dependent Semiparametric Methods |
|
|
441 | (90) |
|
Two-Stage Estimator with Nonparametric First-Stage |
|
|
441 | (8) |
|
Density or Conditional Mean for First Stage |
|
|
442 | (2) |
|
Other Nonparametric Nuisance Parameters |
|
|
444 | (2) |
|
|
446 | (1) |
|
Moments with Nonparametric Nuisance Parameters |
|
|
446 | (1) |
|
|
446 | (1) |
|
Nonparametric Heteroskedasticity Test |
|
|
447 | (2) |
|
Nonparametric TSE for Endogenous Regressors |
|
|
449 | (7) |
|
Linear Model and Nonparametric 2SLSE |
|
|
449 | (2) |
|
Smooth Nonlinear Models and Nonparametric SUB |
|
|
451 | (1) |
|
Non-smooth Models and Nonparametric SUB |
|
|
452 | (2) |
|
Nonparametric Second-Stage and Integral Equation |
|
|
454 | (2) |
|
Control-Function (CF) Approaches |
|
|
456 | (8) |
|
|
456 | (2) |
|
|
458 | (2) |
|
Average Structural Function (ASF) |
|
|
460 | (1) |
|
Pairwise Differencing for Nonparametric CF |
|
|
461 | (1) |
|
Nonparametric Second-Stage |
|
|
462 | (2) |
|
|
464 | (15) |
|
Density-Weighted Average Derivative (WADE) |
|
|
464 | (3) |
|
Average Derivative Estimators (ADE) |
|
|
467 | (1) |
|
|
467 | (1) |
|
|
468 | (1) |
|
|
469 | (2) |
|
|
471 | (2) |
|
Quasi-MLE for Binary Response |
|
|
473 | (2) |
|
|
475 | (1) |
|
Extensions to Multiple Index Models |
|
|
476 | (3) |
|
|
479 | (9) |
|
|
479 | (4) |
|
Empirical Application: Hedonic Price Indices |
|
|
483 | (2) |
|
Pair-wise Differencing for Semi-linear LDV Models |
|
|
485 | (3) |
|
|
488 | (9) |
|
|
488 | (1) |
|
|
489 | (2) |
|
|
491 | (3) |
|
|
494 | (3) |
|
Transformation of Response Variables |
|
|
497 | (13) |
|
Density-Weighted Response Approach |
|
|
497 | (1) |
|
|
497 | (2) |
|
|
499 | (1) |
|
|
500 | (1) |
|
Extensions of Density-Weighted Response Approach |
|
|
501 | (1) |
|
|
501 | (3) |
|
Ordered Discrete Response |
|
|
504 | (2) |
|
|
506 | (2) |
|
Unknown Transformation of Response |
|
|
508 | (2) |
|
Nonparametric Specification and Significance Tests |
|
|
510 | (21) |
|
Omitted-Variable-Based LM-Type Tests |
|
|
510 | (3) |
|
Wald-Type Tests with Parametric and Nonparametric Fits |
|
|
513 | (3) |
|
|
516 | (2) |
|
Model-Selection-Based Tests |
|
|
518 | (2) |
|
Single-Index Model Fitness Tests |
|
|
520 | (4) |
|
Nonparametric Significance Tests |
|
|
524 | (1) |
|
|
524 | (2) |
|
|
526 | (1) |
|
Cross-Validation Approach for Mixed Regressors |
|
|
527 | (1) |
|
Non-nested Model Tests and Multi-sample Tests |
|
|
527 | (1) |
|
LM-Type Tests for Non-nested Models |
|
|
527 | (1) |
|
LR-Type Test for Non-nested Models |
|
|
528 | (1) |
|
Multi-sample Tests for Multiple Treatments |
|
|
529 | (2) |
|
Appendix I: Mathematical Backgrounds and Chapter Appendices |
|
|
531 | (84) |
|
Mathematical and Statistical Backgrounds |
|
|
531 | (18) |
|
Bounds, Limits, and Functions |
|
|
531 | (3) |
|
Continuity and Differentiability of Functions |
|
|
534 | (2) |
|
Probability Space and Random Variables |
|
|
536 | (2) |
|
|
538 | (3) |
|
Density and Conditional Mean |
|
|
541 | (3) |
|
Dominated and Monotone Convergences |
|
|
544 | (1) |
|
Convergence of Random Variables and Laws |
|
|
545 | (2) |
|
|
547 | (2) |
|
|
549 | (11) |
|
Seemingly Unrelated Regression (SUR) |
|
|
549 | (1) |
|
|
549 | (1) |
|
|
550 | (1) |
|
|
551 | (2) |
|
On System GMM Efficiency Gain |
|
|
553 | (1) |
|
Classical Simultaneous Equation Estimators |
|
|
554 | (1) |
|
Full-Information MLE (FIML) |
|
|
554 | (3) |
|
Limited-Information MLE (LIML) |
|
|
557 | (1) |
|
|
558 | (2) |
|
|
560 | (6) |
|
Details on Four Issues for M-Estimator |
|
|
560 | (3) |
|
MLE with LSE First-Stage and Control Function |
|
|
563 | (3) |
|
|
566 | (6) |
|
|
566 | (2) |
|
|
568 | (1) |
|
|
568 | (2) |
|
|
570 | (1) |
|
|
570 | (2) |
|
|
572 | (3) |
|
Proportional Hazard and Accelerated Failure Time |
|
|
572 | (1) |
|
|
572 | (1) |
|
Accelerated Failure Time (AFT) |
|
|
573 | (1) |
|
|
574 | (1) |
|
|
575 | (9) |
|
Type-I Extreme Errors to Multinomial Logit |
|
|
575 | (2) |
|
|
577 | (1) |
|
|
577 | (2) |
|
|
579 | (1) |
|
Final-Stage MLE and Remarks |
|
|
580 | (2) |
|
Asymptotic Distribution of MSM estimators |
|
|
582 | (2) |
|
|
584 | (12) |
|
Other Density Estimation Ideas |
|
|
584 | (1) |
|
|
584 | (1) |
|
Maximum Penalized Likelihood Estimator |
|
|
585 | (1) |
|
|
585 | (2) |
|
Asymptotic Distribution for Kernel Regression Estimator |
|
|
587 | (2) |
|
Other Nonparametric Regression Methods |
|
|
589 | (1) |
|
Nearest-Neighbor Estimator |
|
|
589 | (1) |
|
|
590 | (1) |
|
|
591 | (3) |
|
Asymptotic Normality of Series Estimators |
|
|
594 | (2) |
|
|
596 | (14) |
|
|
596 | (1) |
|
|
596 | (1) |
|
|
597 | (2) |
|
|
599 | (1) |
|
GMM with Integrated Squared Moments |
|
|
600 | (3) |
|
Goodness-of-Fit Tests for Distribution Functions |
|
|
603 | (1) |
|
Brownian Motion and Brownian Bridge |
|
|
603 | (2) |
|
Kolmogorov--Smirnov (KS) test |
|
|
605 | (1) |
|
Cramer--von-Mises (CM) and Anderson--Darling (AD) tests |
|
|
606 | (1) |
|
Joint Test for All Quantiles |
|
|
607 | (3) |
|
|
610 | (5) |
|
Asymptotic Variance of Marginal Integration |
|
|
610 | (3) |
|
CLT for Degenerate U-Statistics |
|
|
613 | (2) |
|
Appendix II: Supplementary Topics |
|
|
615 | (90) |
|
Appendix for Hypothesis Test |
|
|
615 | (17) |
|
|
615 | (2) |
|
Comparison of Tests and Local Alternatives |
|
|
617 | (1) |
|
Efficacy and Relative Efficiency |
|
|
617 | (3) |
|
Finding Distribution Under Alternatives |
|
|
620 | (2) |
|
Wald Test Under Local Alternatives to Linear Hypotheses |
|
|
622 | (1) |
|
Non-nested Hypothesis Testing |
|
|
623 | (1) |
|
|
623 | (2) |
|
LR Test for Strictly Non-nested Hypotheses |
|
|
625 | (2) |
|
Centered LR Test and Encompassing |
|
|
627 | (1) |
|
J-Test and Score Test Under Artificial Nesting |
|
|
627 | (1) |
|
Pearson Chi-Square Goodness-of-Fit Test |
|
|
628 | (4) |
|
Stratified Sampling and Weighted M-Estimator |
|
|
632 | (14) |
|
Three Stratified Sampling Methods |
|
|
633 | (1) |
|
Standard Stratified Sampling (SSS) |
|
|
633 | (1) |
|
Variable Probability Sampling (VPS) |
|
|
634 | (1) |
|
Multinomial Sampling (MNS) |
|
|
635 | (1) |
|
|
635 | (2) |
|
|
637 | (1) |
|
|
638 | (1) |
|
|
638 | (2) |
|
An Example: Weighted M-Estimator for Mean |
|
|
640 | (2) |
|
Logit Slope Consistency in Response-Based Samples |
|
|
642 | (2) |
|
Truncated Samples with Zero Cell Probability |
|
|
644 | (1) |
|
Truncated Count Response Under On-Site Sampling |
|
|
645 | (1) |
|
Empirical Likelihood Estimator |
|
|
646 | (8) |
|
Empirical Likelihood (EL) Method |
|
|
647 | (3) |
|
Exponential Tilting Estimator |
|
|
650 | (2) |
|
Minimum Discrepancy Estimator |
|
|
652 | (2) |
|
Stochastic-Process Convergence and Applications |
|
|
654 | (11) |
|
|
654 | (2) |
|
Stochastic Process and Weak Convergence |
|
|
656 | (1) |
|
|
656 | (3) |
|
|
659 | (2) |
|
Stochastically Equicontinuous Empirical Processes |
|
|
661 | (2) |
|
|
663 | (2) |
|
Goodness-of-Fit Tests with Nuisance Parameters |
|
|
665 | (10) |
|
Some Stochastic Integrals |
|
|
665 | (3) |
|
Weak Limit of GOF tests with Nuisance Parameters |
|
|
668 | (3) |
|
Asymptotically Distribution-Free (ADF) Transformation |
|
|
671 | (4) |
|
|
675 | (30) |
|
Review on Asymptotic Statistical Inference |
|
|
675 | (2) |
|
Bootstrap for Distribution Functions |
|
|
677 | (6) |
|
|
677 | (3) |
|
Percentile-t, Centered-Percentile, and Percentile |
|
|
680 | (2) |
|
Transformation and Percentile Method Invariance |
|
|
682 | (1) |
|
Bootstrap Consistency and Confidence Intervals |
|
|
683 | (4) |
|
Defining Bootstrap Consistency |
|
|
683 | (1) |
|
Bootstrap Consistency with Empirical Processes |
|
|
684 | (1) |
|
Confidence Intervals with Bootstrap Quantiles |
|
|
685 | (2) |
|
High-Order Improvement for Asymptotic Normality |
|
|
687 | (3) |
|
|
690 | (7) |
|
Cumulant Generating Function |
|
|
690 | (2) |
|
Density of Normalized Sums |
|
|
692 | (2) |
|
Distribution Function of Normalized Sums |
|
|
694 | (1) |
|
|
695 | (2) |
|
|
697 | (8) |
|
|
697 | (2) |
|
Bootstrap Bias-Correction |
|
|
699 | (3) |
|
Estimating Asymptotic Variance with Bootstrap Quantiles |
|
|
702 | (1) |
|
Bootstrap Iteration and Pre-pivoting |
|
|
702 | (3) |
|
Appendix III: Select Gauss Programs |
|
|
705 | (22) |
|
LSE, IVE, GMM and Wald Test |
|
|
705 | (2) |
|
|
707 | (1) |
|
Method-of-Moment Test for Symmetry |
|
|
708 | (1) |
|
|
709 | (1) |
|
Univariate Parametric LDV Models |
|
|
710 | (4) |
|
|
710 | (1) |
|
|
711 | (1) |
|
|
712 | (1) |
|
Weibull MLE under Random Censoring |
|
|
713 | (1) |
|
Multivariate Parametric LDV Models |
|
|
714 | (2) |
|
|
714 | (1) |
|
Two-Stage Estimator for Sample Selection |
|
|
715 | (1) |
|
Nonparametric Regression and Hazard |
|
|
716 | (4) |
|
|
716 | (1) |
|
Bivariate Regression Function |
|
|
717 | (1) |
|
Regression Derivative and Confidence Interval |
|
|
718 | (2) |
|
Bandwidth-Free Semiparametric Methods |
|
|
720 | (3) |
|
Winsorized Mean Estimator (WME) for Censored Model |
|
|
720 | (2) |
|
Differencing for Semi-Linear Model |
|
|
722 | (1) |
|
Bandwidth-Dependent Semiparametric Methods |
|
|
723 | (4) |
|
Two-Stage Estimator for Semi-Linear Model |
|
|
723 | (2) |
|
Quasi-MLE for Single-Index Binary Response |
|
|
725 | (2) |
References |
|
727 | (32) |
Index |
|
759 | |