Muutke küpsiste eelistusi

E-raamat: Micro- and Macromechanical Properties of Materials

(Xiangtan University, Hunan, China), (Xiangtan University, Hunan, China), (Xiangtan University, Hunan, China)
  • Formaat - EPUB+DRM
  • Hind: 126,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is an English translation of a Chinese textbook that has been designated a national planned university textbook, the highest award given to scientific textbooks in China. The book provides a complete overview of mechanical properties and fracture mechanics in materials science, mechanics, and physics. It details the macro- and micro-mechanical properties of metal structural materials, nonmetal structural materials, and various functional materials. It also discusses the macro and micro failure mechanism under different loadings and contains research results on thin film mechanics, smart material mechanics, and more.

Arvustused

"This book offers the most comprehensive and complete overview of mechanical properties and fracture mechanics in the field of materials science. Besides, it provides a complete and rigorous overview in the research areas of mechanics and materials sciences from the viewpoint of length scales. Moreover, this book focuses on connections between scientific theories, experiment methods and engineering applications so as to serve as a good manual for engineers and technicians on mechanics of materials." Daining Fang, LTCS, College of Engineering, Peking University, Beijing, China

"This book covers a wide range of topics from the fundamental aspects of mechanics to the mechanical properties of various materials including functional bulk materials and coating materials as well as thin films. I believe such a comprehensive book will be most helpful for the graduate students particularly in the mechanical engineering and materials science and engineering departments." Jing-Feng Li, Tsinghua University, Beijing, China

"This is a textbook uniquely designed to interest students and researchers alike with an integrated method in dealing with material mechanical properties: macroscopic failure is explained with microscopic reasons. This is an interesting and surely good new perspective in understanding materials properties, functions and failure. Senior undergraduate students, research students and seasoned researchers in materials science and engineering would find it very useful." Sam Zhang, Nanyang Technological University

Foreword xvii
Foreword to the English Language Edition xix
Preface xxi
Acknowledgments xxiii
Introduction xxv
Authors xxxix
Editorial Committee xli
Chapter 1 Fundamentals of Elasto-Plastic Mechanics
1(50)
1.1 Prerequisites
1(6)
1.1.1 Objectives of Elasto-Plastic Mechanics
1(1)
1.1.2 Fundamental Assumptions of Elasto-Plastic Mechanics
1(1)
1.1.2.1 Continuity
2(1)
1.1.2.2 Homogeneity
2(1)
1.1.2.3 Isotropy
2(1)
1.1.3 Elasticity and Plasticity
2(2)
1.1.4 Tensor and Summation Conventions
4(1)
1.1.4.1 Tensors
4(3)
1.2 Stress
7(12)
1.2.1 External Forces and Stresses
7(1)
1.2.1.1 External Forces
7(1)
1.2.1.2 Stresses
8(1)
1.2.1.3 Stress Component
9(2)
1.2.2 Equations of Equilibrium and Stress Boundary Conditions
11(1)
1.2.2.1 Equations of Equilibrium
11(2)
1.2.2.2 Stress Boundary Conditions
13(3)
1.2.3 Principal Stresses and Principal Directions
16(2)
1.2.4 Spherical and Deviatoric Stress Tensors
18(1)
1.3 Strain
19(8)
1.3.1 Deformation and Strain
19(1)
1.3.1.1 Description of Displacement
19(1)
1.3.1.2 Description of Strain
19(1)
1.3.1.3 Geometric Equations
20(6)
1.3.2 Principal Strains and Principal Directions
26(1)
1.4 Stress-Strain Relationship
27(21)
1.4.1 Hooke's Law of Isotropic Elastic Material
28(4)
1.4.2 Elastic Strain Energy Function
32(3)
1.4.3 Yield Function and Yield Surface
35(1)
1.4.3.1 Yield Function
35(2)
1.4.3.2 II Space
37(1)
1.4.3.3 Yield Surface
38(1)
1.4.4 Two General Yield Criteria
39(1)
1.4.4.1 The Tresca Yield Criterion
39(2)
1.4.4.2 The von Mises Yield Criterion
41(3)
1.4.5 Incremental Theory of Plasticity
44(3)
1.4.6 Total Strain Theory of Plasticity
47(1)
Exercises
48(2)
References
50(1)
Chapter 2 Basis of Macro- and Microfracture Mechanics
51(44)
2.1 Analysis of Macrofracture Mechanics
51(25)
2.1.1 Cracking Mode and the Elastic Stress Field near the Crack Tip
53(5)
2.1.2 Stress Intensity Factor
58(1)
2.1.3 Plastic Correction under Small-Scale Yielding
59(1)
2.1.3.1 Plastic Area of Crack Tip under Small-Scale Yielding
59(4)
2.1.3.2 Interaction between Stress State and Plastic Area
63(1)
2.1.3.3 Plastic Correction of Stress Intensity Factor KI
64(3)
2.1.4 Fracture Criterion and Fracture Toughness
67(1)
2.1.4.1 Stress Intensity Factor Fracture Criterion
67(1)
2.1.4.2 Crack Propagation Energy Criterion
68(4)
2.1.4.3 Fracture Toughness and Critical Fracture Stress
72(1)
2.1.5 Elastic-Plastic Fracture Mechanics
73(1)
2.1.5.1 Crack Opening Displacement
73(1)
2.1.5.2 J Integral Theory
74(2)
2.2 Analysis of Microfracture Mechanics
76(15)
2.2.1 Basic Concept and Classification of Damage
76(2)
2.2.2 Example: One-Dimensional Creep Damage
78(1)
2.2.2.1 Undamaged Ductile Fracture
79(1)
2.2.2.2 Damaged Brittle Fracture without Deformation
79(1)
2.2.2.3 Damage and Deformation Considered Simultaneously
80(2)
2.2.3 Isotropic Damage
82(1)
2.2.3.1 Definition of Isotropic Damage
82(1)
2.2.3.2 Strain Equivalence Principle
83(1)
2.2.3.3 Promotion of Effective Stress Concept
83(1)
2.2.3.4 Measurement of Toughness Damage
84(1)
2.2.4 Anisotropic Damage
85(3)
2.2.5 Interaction of Damage and Fracture
88(1)
2.2.6 Nanofracture Mechanics
89(2)
Exercises
91(1)
References
92(3)
Chapter 3 Basic Mechanical Properties of Materials
95(32)
3.1 Basic Mechanical Properties of Materials
95(16)
3.1.1 Mechanical Properties of a Material under Tension
95(1)
3.1.1.1 Tensile-Test Diagram
95(1)
3.1.1.2 Stress-Strain Curve
95(3)
3.1.1.3 Tensile Properties
98(1)
3.1.1.4 True Stress-True Strain Curve
99(1)
3.1.1.5 Important Parameters
100(1)
3.1.2 Mechanical Properties of Materials under Compression
101(1)
3.1.2.1 Compression-Test Diagram and Stress-Strain Curve
101(2)
3.1.2.2 Important Mechanical Properties
103(1)
3.1.3 Mechanical Properties of Materials under Torsion
103(1)
3.1.3.1 Stress and Strain under Torsion
103(2)
3.1.3.2 Mechanical Properties in Torsion Testing
105(3)
3.1.4 Mechanical Properties of Material under Bending
108(1)
3.1.4.1 Stress and Deformation under Bending
108(1)
3.1.4.2 Mechanical Properties Measured in a Bending Test
109(2)
3.2 Measurement of the Basic Mechanical Properties of Materials
111(12)
3.2.1 Measurement of the Tensile Properties of Materials
112(1)
3.2.1.1 Tensile Test
112(1)
3.2.1.2 Measurement of Material Properties
113(2)
3.2.2 Measurement of the Compressive Properties of Materials
115(1)
3.2.2.1 Uniaxial Compressive Test
115(1)
3.2.2.2 Ring Crush Strength Test
116(1)
3.2.3 Measurement of the Mechanical Properties of Materials under Torsion
117(1)
3.2.3.1 Characteristics of the Torsion Test
117(1)
3.2.3.2 Torsion Test
118(2)
3.2.4 Measurement of Material Bending Properties
120(1)
3.2.5 Measurement of Material Shear Properties
121(1)
3.2.5.1 Simple Shear Test
121(1)
3.2.5.2 Double Shear Test
122(1)
3.2.5.3 Punch Shear Test
122(1)
3.2.6 New Advances in the Application of Testing Methods to the Basic Mechanical Properties of Materials
123(1)
Exercises
123(1)
References
124(3)
Chapter 4 Material Hardness and the Size Effect
127(32)
4.1 Introduction to Material Hardness
127(1)
4.1.1 Definition of Hardness
127(1)
4.1.2 Material Hardness Testing
128(1)
4.2 Brinell Hardness
128(4)
4.2.1 Brinell Hardness Measurement Method and Principles
128(1)
4.2.2 Other Measurement Considerations Related to Brinell Hardness
129(2)
4.2.3 Characteristics of Brinell Hardness Testing and Its Applications
131(1)
4.3 Rockwell Hardness
132(3)
4.3.1 Rockwell Hardness Testing Method and Principles
132(2)
4.3.2 Advantages and Disadvantages of Rockwell Hardness and Its Application
134(1)
4.3.3 Rockwell Surface Hardness
134(1)
4.4 Vickers Hardness
135(3)
4.4.1 Vickers Hardness Principles and Methods
135(2)
4.4.2 Vickers Hardness Characteristics and Applications
137(1)
4.5 Dynamic Indentation Hardness Testing
138(1)
4.5.1 Shore Hardness
138(1)
4.5.1.1 Shore Hardness Testing Principles
138(1)
4.5.1.2 Shore Hardness Characteristics and Applications
138(1)
4.5.2 Brinell Hammer Test
139(1)
4.5.2.1 Brinell Hammer Testing Principles
139(1)
4.5.2.2 Brinell Hammer Hardness Testing Characteristics and Applications
139(1)
4.6 Scratch Testing for Materials' Hardness
139(3)
4.6.1 Testing Principles and Theoretical Formulae
139(1)
4.6.1.1 Mohs Hardness
139(1)
4.6.1.2 Martens Scratch Hardness
140(1)
4.6.2 Scratch Process and Analysis
141(1)
4.6.3 Scratch Hardness and Its Relationship to Mechanical Properties
142(1)
4.7 Microhardness
142(3)
4.7.1 Microhardness Testing Principles
143(1)
4.7.2 Knoop Hardness Characteristics
143(1)
4.7.3 Microhardness Characteristics and Applications
144(1)
4.8 Nanohardness
145(3)
4.8.1 Nanoindentation
145(2)
4.8.2 Nanoscratch Hardness
147(1)
4.9 Size Effect in Materials and Hardness
148(7)
4.9.1 Size Effect
148(2)
4.9.2 Strain Gradient Theory and Size Effect on Hardness
150(2)
4.9.3 Relationship between Free Surface and Size Effect
152(3)
Exercises
155(1)
References
156(3)
Chapter 5 Testing of Material Fracture Toughness
159(38)
5.1 Testing of Plane Strain Fracture Toughness KIC
159(10)
5.1.1 Common Fracture Toughness Measurement Method and KIC Representation
159(5)
5.1.2 Requirements on Specimen Size
164(1)
5.1.3 Determination of Critical Load
165(2)
5.1.4 Testing the Plane Strain Fracture Toughness KIC
167(1)
5.1.4.1 Preparation of Specimen
167(1)
5.1.4.2 Fatigue Precracking
168(1)
5.1.4.3 Specimen Measurement
168(1)
5.1.4.4 Test Procedure
169(1)
5.1.4.5 KQ Calculation
169(1)
5.2 Testing of Surface Crack's Fracture Toughness KIE
169(7)
5.2.1 Representation of Stress Intensity Factor KI
171(1)
5.2.1.1 Irwin Approximate Solution
171(2)
5.2.1.2 Shah-Kobayashi Solution
173(1)
5.2.2 Requirements Related to Specimen Size
173(2)
5.2.3 Determination of Critical Load
175(1)
5.3 Testing of Plane Stress Fracture Toughness KC
176(5)
5.3.1 Representation of Stress Intensity Factor KI
176(1)
5.3.1.1 Representation of CCT Specimen's KI
176(2)
5.3.1.2 Correction Factor Value for CCT Specimens
178(1)
5.3.2 Selection of Specimen Size
178(1)
5.3.2.1 Specimen Width
178(1)
5.3.2.2 Initial Crack Length
179(1)
5.3.3 Determination of KC Value
179(1)
5.3.3.1 R Curve Method
179(2)
5.3.3.2 F-V Curve Method
181(1)
5.4 Testing of J Integral's Critical Value JIC
181(6)
5.4.1 Testing Methods
182(1)
5.4.1.1 Multispecimen Method
182(1)
5.4.1.2 Single-Specimen Method
183(1)
5.4.1.3 Resistance Curve Method
183(1)
5.4.2 Determination of Critical Point
184(1)
5.4.2.1 Potential Method
184(1)
5.4.2.2 Metallographic Method
185(2)
5.4.2.3 Acoustic Emission Method
187(1)
5.5 Testing of COD's Critical Value δC
187(7)
5.5.1 δC Representation
188(1)
5.5.1.1 Representation Containing Rotation Factor r
188(2)
5.5.1.2 Representation Containing Force Point Displacement Δ
190(1)
5.5.1.3 Wells Representation
190(1)
5.5.1.4 Representation Containing δe and δP
190(2)
5.5.2 VC Determination
192(1)
5.5.2.1 First Type of F-V Curve
192(1)
5.5.2.2 Second Type of F-V Curve
192(1)
5.5.2.3 Third Type of F-V Curve
193(1)
5.5.2.4 Fourth Type of F-V Curve
193(1)
5.5.3 δR-Δa Curve
193(1)
Exercises
194(1)
References
194(3)
Chapter 6 Residual Stresses in Materials
197(40)
6.1 Introduction to Residual Stresses
197(7)
6.1.1 Generation of Residual Stresses
197(1)
6.1.1.1 Principle for the Generation of Residual Stresses
197(1)
6.1.1.2 Classification of Residual Stresses
198(1)
6.1.1.3 Origins of Residual Stresses
199(1)
6.1.2 Adjustment and Relief of Residual Stresses
200(1)
6.1.2.1 Adjustment and Relief of Residual Stresses by the Thermal Method
200(2)
6.1.2.2 Adjustment and Relief of Residual Stresses by the Mechanical Method
202(2)
6.2 Measurement of Residual Stresses
204(18)
6.2.1 Mechanical Measurement Methods of Residual Stresses
205(1)
6.2.1.1 Sach's Method
205(3)
6.2.1.2 Hole Drilling Method
208(3)
6.2.1.3 Indentation Method
211(1)
6.2.2 Physical Measurement Methods of Residual Stresses
211(1)
6.2.2.1 X-Ray Diffraction Method to Measure Residual Stresses
211(7)
6.2.2.2 Magnetic Method to Measure Residual Stresses
218(2)
6.2.2.3 Photoelastic Coating Method to Measure Residual Stresses
220(2)
6.3 Influence of Residual Stresses on the Mechanical Properties of Materials
222(12)
6.3.1 Influence of Residual Stresses on Static Properties
222(1)
6.3.1.1 Influence of Residual Stresses on Static Strength and Deformation
222(1)
6.3.1.2 Influences of Residual Stresses on the Static Stability of Structural Components
223(2)
6.3.1.3 Influence of Residual Stress on Hardness
225(2)
6.3.2 Influence of Residual Stresses on Brittle Failure and Stress Corrosion Cracking
227(1)
6.3.2.1 Influence of Residual Stresses on Brittle Failure
227(1)
6.3.2.2 Influence of Residual Stresses on Stress Corrosion Cracking
228(2)
6.3.3 Influence of Residual Stresses on Fatigue Strength
230(1)
6.3.3.1 Influence of Residual Stresses on Fatigue Strength Caused by Cold Working and Heat Treatment
230(2)
6.3.3.2 Influence of Residual Stress Introduced by Surface Processing on Fatigue Strength
232(2)
Exercises
234(1)
References
235(2)
Chapter 7 Creep and Fatigue of Metals
237(42)
7.1 Introduction to Creep of Metallic Materials
237(10)
7.1.1 Concept of Creep
237(2)
7.1.2 Creep Curve
239(1)
7.1.3 Characterization of Creep Experimental Results
240(2)
7.1.4 Relationship between Steady-State Creep Rate and Stress
242(1)
7.1.5 Relationship between Steady-State Creep Rate and Temperature
243(1)
7.1.6 Application Examples
244(3)
7.2 Creep Mechanisms and Creep Mechanism Diagrams of Metallic Materials
247(5)
7.2.1 Creep Mechanisms of Metallic Materials
247(3)
7.2.2 Diagram of Creep Mechanisms
250(1)
7.2.3 Creep Deformation under Complex Stress State
251(1)
7.3 Introduction to Fatigue of Metallic Materials
252(3)
7.3.1 Definition of Fatigue
252(1)
7.3.2 Classification of Fatigue Failure
253(1)
7.3.3 Fatigue Load
254(1)
7.3.4 Cyclic Stress
254(1)
7.4 Fatigue Failure and Fatigue Mechanisms of Metallic Materials
255(7)
7.4.1 Fatigue Strength and Fatigue Limit
255(1)
7.4.2 Fatigue Damage Mechanisms
256(1)
7.4.2.1 Nucleation of Fatigue Crack
256(1)
7.4.2.2 Propagation of Fatigue Crack
257(1)
7.4.3 General Behavior of Fatigue Crack Propagation
258(1)
7.4.3.1 Different Regions of the Fatigue Crack Propagation
258(1)
7.4.3.2 Microscopic Process of Fatigue Crack Propagation
258(4)
7.5 Methodology of Study of Fatigue Failure in Metallic Materials
262(6)
7.5.1 S-N Curve
262(2)
7.5.2 Goodman Diagram
264(3)
7.5.3 Fatigue Failure of Materials under Complex Stress States
267(1)
7.6 Cyclic Stress-Strain Curves of Metallic Materials
268(3)
7.6.1 Cyclic Deformation Behavior of Single Crystals
268(2)
7.6.2 Influence of Strain Rate and Hold Time of Load
270(1)
7.7 Interaction of Creep and Fatigue
271(5)
7.7.1 Creep-Fatigue Waveform
272(1)
7.7.2 Nature of Creep-Fatigue Interaction
273(2)
7.7.3 Creep-Fatigue Fracture Mechanism Diagram
275(1)
Exercises
276(1)
References
277(2)
Chapter 8 Mechanical Properties of Materials in Environmental Media
279(42)
8.1 Stress Corrosion Cracking
279(13)
8.1.1 Stress Corrosion Cracking and Its Cracking Characteristics
279(3)
8.1.2 Testing Methods and Evaluating Indicators of Stress Corrosion
282(1)
8.1.2.1 Testing Methods and Evaluating Indicators of Smooth Samples
282(1)
8.1.2.2 Evaluating Indicator of Cracked Sample
283(2)
8.1.2.3 Testing Method of Cracked Sample
285(2)
8.1.3 SCC Mechanisms
287(1)
8.1.3.1 Anode Rapid Dissolution Theory
287(1)
8.1.3.2 Occluded Cell Theory
288(1)
8.1.3.3 Passive Membrane Theory
288(3)
8.1.4 SCC Countermeasures
291(1)
8.2 Hydrogen Embrittlement
292(9)
8.2.1 Types of Hydrogen Embrittlement
292(2)
8.2.2 HIDC's Resistance Indicator and Testing Method
294(1)
8.2.2.1 Threshold Stress σHC
294(2)
8.2.2.2 Threshold Stress Intensity Factor KIHC
296(1)
8.2.2.3 Crack Growth Rate da/dt
296(1)
8.2.3 Hydrogen Embrittlement Mechanism
297(1)
8.2.3.1 Hydrogen Pressure Theory
297(1)
8.2.3.2 Theory of Surface Energy Decrease after Hydrogen Adsorption
297(1)
8.2.3.3 Weak Bond Theory
298(1)
8.2.3.4 Dislocation Theory
299(1)
8.2.4 Relationship between Hydrogen Embrittlement and Stress Corrosion
300(1)
8.2.5 Measures of Preventing Hydrogen Embrittlement
301(1)
8.3 Corrosion Fatigue Cracking
301(5)
8.3.1 Definition and Features of Corrosion Fatigue
301(2)
8.3.2 Corrosion Fatigue Mechanism
303(1)
8.3.3 Corrosion Fatigue Crack Growth
304(1)
8.3.3.1 Summation Model
305(1)
8.3.3.2 Competition Model
306(1)
8.3.4 Measures of Preventing Corrosion Fatigue
306(1)
8.4 Corrosive Wear
306(3)
8.4.1 Definition and Features of Corrosive Wear
306(1)
8.4.2 Corrosive Wear Mechanism
306(2)
8.4.3 Relationship between Corrosive Wear and Stress Corrosion, Hydrogen Embrittlement, and Corrosion Fatigue
308(1)
8.4.4 Protection Measures of Corrosive Wear
308(1)
8.5 Other Environmentally Assisted Cracking or Embrittlement Issues
309(9)
8.5.1 Radiation Embrittlement
309(1)
8.5.1.1 Radiation Effect
309(5)
8.5.1.2 Mechanism of Radiation-Induced Embrittlement
314(1)
8.5.2 Phenomena and Features of Fluid (Solid) Metal Embrittlement
315(1)
8.5.3 Mechanism of Metal Embrittlement
316(2)
Exercises
318(1)
References
319(2)
Chapter 9 Macro and Microcomputational Materials Mechanics
321(40)
9.1 Structural Hierarchy of Materials and Computational Materials Science
321(4)
9.1.1 Material System and the Structural Hierarchy of Materials
321(1)
9.1.2 Generation and Main Methodologies of Computational Materials Science
322(1)
9.1.3 Trend of Computational Materials Science
323(2)
9.2 Computational Material Mechanics at the Macroscale
325(14)
9.2.1 Generation of the Finite Element Method
326(1)
9.2.2 Matrix Representation of Elastic Mechanics and Variational Principles
326(1)
9.2.2.1 Matrix Representation of Governing Equations
327(2)
9.2.2.2 Variation Principles
329(1)
9.2.3 Analytical Procedures in the Finite Element Method
330(1)
9.2.3.1 Discretization of Structure
331(1)
9.2.3.2 Element Analysis
332(4)
9.2.3.3 Assembly of Equilibrium Equations of the Whole System
336(1)
9.2.3.4 Matrix for Solving Nodal Displacements and Calculation of Stresses
336(1)
9.2.4 Brief Introduction to the Nonlinear Finite Element Method
336(2)
9.2.5 Finite Element Analysis Software Packages
338(1)
9.2.5.1 ANSYS Structural Analysis Software
338(1)
9.2.5.2 ABAQUS Mechanical Finite Element Analysis Software
338(1)
9.3 Computational Micromechanics of Materials
339(6)
9.3.1 Homogenization of Polycrystals
339(1)
9.3.2 Simulation Approaches for the Deformation of Polycrystals
340(1)
9.3.2.1 Fundamental Equations for the Simulation
341(2)
9.3.2.2 Determination of Plastic Strain
343(1)
9.3.2.3 Crystallographic Orientation
343(2)
9.3.2.4 Simulation Results and Discussion
345(1)
9.4 Computational Nanomechanics of Materials
345(9)
9.4.1 Fundamental Principle of Molecular Dynamics
347(1)
9.4.1.1 Solution of Motion Equations
347(2)
9.4.1.2 Interatomic Potential
349(2)
9.4.2 Isothermal Molecular Dynamics
351(2)
9.4.3 Applications of Molecular Dynamics in the Fracture Behavior of Materials
353(1)
9.5 Multiscale Computational Analysis
354(4)
9.5.1 Necessity of Multiscale Computational Analysis
354(1)
9.5.2 Types of Multiscale Computational Analysis
354(1)
9.5.3 Multiscale Simulation Combining the Finite Element Method and Molecular Dynamics
355(3)
Exercises
358(1)
References
359(2)
Chapter 10 Mechanical Properties of Smart Materials
361(40)
10.1 Introduction to Smart Materials
361(3)
10.1.1 Concepts and Characteristics of Smart Materials
361(1)
10.1.2 Applications of Smart Materials
362(1)
10.1.2.1 Structural Inspection
362(1)
10.1.2.2 Vibration Control
363(1)
10.1.2.3 Adaptive Structures
363(1)
10.1.2.4 Artificial Muscles and Skin
364(1)
10.1.3 Classification of Smart Materials
364(1)
10.2 Shape Memory Alloys
364(9)
10.2.1 Shape Memory Effect and Superelasticity
364(1)
10.2.2 Microstructure and Memory Mechanisms of Shape Memory Alloys
365(2)
10.2.3 Mathematical Models of Shape Memory Alloys
367(6)
10.3 Magnetostrictive Materials and Ferromagnetic Shape Memory Alloys
373(15)
10.3.1 Magnetocrystalline Anisotropy
373(2)
10.3.2 Magnetostrictive Effect
375(2)
10.3.3 Ferromagnetic Shape Memory Alloys
377(1)
10.3.4 Mathematical Models of Magnetic Couplings
378(10)
10.4 Ferroelectric and Piezoelectric Materials
388(11)
10.4.1 Electrostrictive Effect
388(2)
10.4.2 Ferroelectric Effect
390(4)
10.4.3 Piezoelectric Effect
394(1)
10.4.4 Mathematical Models of Electromechanical Couplings
395(4)
Exercises
399(1)
References
399(2)
Chapter 11 Mechanical Properties of Thin Films
401(50)
11.1 An Overview
401(2)
11.2 Elastic Modulus and Stress-Strain Relationship of Thin Films
403(10)
11.2.1 Elastic Modulus of Thin Films
403(1)
11.2.1.1 Three-Point Bending Method
403(2)
11.2.1.2 Indentation Method
405(1)
11.2.2 Stress-Strain Relationship of Thin Films
405(1)
11.2.2.1 Tensile Method
406(1)
11.2.2.2 Indentation Method
406(7)
11.3 Residual Stress of Thin Films
413(12)
11.3.1 Sources of Residual Stress
413(1)
11.3.2 Measurement of Residual Stress in Thin Films
414(1)
11.3.2.1 Deflection Curvature Method
414(3)
11.3.2.2 Cantilever Beam Method
417(2)
11.3.2.3 Indentation Method
419(1)
11.3.2.4 Indentation Fracture Method
420(5)
11.4 Interface Fracture Toughness of Thin Films
425(5)
11.4.1 Types of Interface Bonding between Film and Substrate
425(1)
11.4.2 Measurement of Fracture Toughness at Interface
426(1)
11.4.2.1 Tape Method
426(1)
11.4.2.2 Stretching Method
426(1)
11.4.2.3 Indentation Fracture Method
426(1)
11.4.2.4 Shear Lag Model
426(1)
11.4.2.5 Sh Model
427(2)
11.4.2.6 Blister Test
429(1)
11.5 Fracture and Polarization of Ferroelectric Films
430(10)
11.5.1 Overview of Ferroelectric Film Fracture
430(1)
11.5.2 Characteristic Features of Cracks in Ferroelectric Films
431(1)
11.5.2.1 Crack Density in Ferroelectric Films
431(2)
11.5.2.2 Compound Elasto-Plastic Crack Shear-Lag Model
433(2)
11.5.3 Polarization of Epitaxial Ferroelectric Thin Film under Nonequally Biaxial Misfit Strains
435(1)
11.5.3.1 Effects of Misfit Strains on the Phase Diagram of Epitaxial Ferroelectric Thin Films
435(3)
11.5.3.2 Effects of Misfit Strains on the Dielectric Property of Epitaxial Ferroelectric Thin Films
438(1)
11.5.4 Effects of Depolarization on Polarization State of Epitaxial Ferroelectric Thin Films
439(1)
11.6 Flexure of Ductile Thin Films
440(7)
11.6.1 Concepts of Ductile Thin Films
440(1)
11.6.2 Preparation of Undulated Monocrystalline Silicon Ribbon on Elastic Substrate
441(1)
11.6.3 Analysis of Flexure of Ductile Thin Film
441(5)
11.6.4 Application of Ductile Thin Films
446(1)
Exercises
447(1)
References
448(3)
Chapter 12 Mechanical Properties of Polymer Materials
451(40)
12.1 Viscoelasticity of High Polymer
451(8)
12.1.1 Stress Relaxation and Strain Rate Effect
451(1)
12.1.1.1 Stress Relaxation
451(1)
12.1.1.2 Strain Rate Effect
452(1)
12.1.2 Frequency-Dependent Properties
452(2)
12.1.3 Temperature-Dependent Properties
454(2)
12.1.4 Time-Temperature Equivalence Principle
456(3)
12.2 Mechanical Models of Viscoelastic Behavior of Polymers
459(10)
12.2.1 A Simple Description of Viscoelastic Mechanical Behavior
459(1)
12.2.1.1 Basic Components
459(1)
12.2.1.2 Maxwell Model
460(2)
12.2.1.3 Kelvin Model
462(2)
12.2.2 Creep Compliance and Relaxation Modulus
464(1)
12.2.3 One-Dimensional Differential-Type Constitutive Relations
465(1)
12.2.4 One-Dimensional Integral-Type Constitutive Relations and the Boltzmann Superposition Principle
466(3)
12.3 Hyperelasticity of Polymers
469(8)
12.3.1 Thermodynamic Analysis of High Elasticity
470(2)
12.3.2 Statistical Theories of High-Elastic Deformation
472(1)
12.3.2.1 Entropy of an Isolated Flexible Chain
472(1)
12.3.2.2 Entropy Changes in Deformation of Cross-Linked Rubber Network
473(1)
12.3.2.3 Strain Energy Functions of the Cross-Linked Network
474(1)
12.3.3 Stress-Strain Relationship of High-Elastic Material
475(1)
12.3.4 Phenomenological Theories for Large High-Elastic Deformation
476(1)
12.4 Yielding and Fracture of Polymers
477(11)
12.4.1 Plastic Yielding of Polymers
477(1)
12.4.1.1 Stress Analysis of Uniaxial Tensile Yielding
477(2)
12.4.1.2 Yield Criteria under Complex Stress State
479(1)
12.4.1.3 A Microscopic Explanation of Yielding
480(1)
12.4.1.4 Factors Affecting the Yielding of Polymers
481(1)
12.4.2 Crazing of Glassy Polymers
482(1)
12.4.2.1 Mesoscopic Structure and Morphology of Craze
482(2)
12.4.2.2 Craze Initiation
484(1)
12.4.2.3 Craze Growth
485(1)
12.4.2.4 Craze Breakdown and Fracture
486(1)
12.4.3 Strength and Brittle-Ductile Transition of Polymers
487(1)
Exercises
488(1)
References
489(2)
Chapter 13 Ceramics and the Mechanical Properties of Ceramic Coating Materials
491(44)
13.1 Overview of Ceramic Materials
491(2)
13.1.1 Concepts of Ceramic Materials
491(1)
13.1.2 Characteristics of Ceramic Materials
492(1)
13.1.3 Microstructure of Ceramic Materials
492(1)
13.1.4 Thermophysical Properties of Ceramic Materials
493(1)
13.2 Mechanical Properties of Ceramic Materials
493(5)
13.2.1 Elastic Deformation of Ceramic Materials
493(1)
13.2.2 Plastic Deformation of Ceramic Materials
494(1)
13.2.3 Superplastic Deformation of Ceramic Materials
495(1)
13.2.4 Hardness of Ceramic Materials
496(1)
13.2.5 Wear Resistance of Ceramic Materials
497(1)
13.3 Fracture Toughness and Testing Methods of Ceramic Materials
498(4)
13.3.1 Static Toughness of Ceramic Materials
498(1)
13.3.2 Fracture Toughness Testing Methods of Ceramic Materials
498(1)
13.3.2.1 The SENB Method
498(2)
13.3.2.2 The IM Method
500(2)
13.4 Strength of Ceramic Materials
502(4)
13.4.1 Flexural Strength of Ceramic Materials
502(2)
13.4.2 Compressive Strength of Ceramic Materials
504(1)
13.4.3 Tensile Strength of Ceramic Materials
504(1)
13.4.4 Major Factors Affecting Strength of Ceramic Materials
504(2)
13.5 Thermal Shock Resistance of Ceramic Materials
506(3)
13.5.1 Thermal Shock Resistance Fracture of Ceramic Materials
506(1)
13.5.2 Thermal Shock Resistance Damage of Ceramic Materials
507(2)
13.6 Creep of Ceramic Materials
509(4)
13.6.1 Creep Mechanisms in Ceramic Materials
509(1)
13.6.1.1 Vacancy Diffusion Flow (Diffusion Creep)
509(1)
13.6.1.2 Grain Boundary Sliding
510(1)
13.6.2 Analysis of Creep Testing Examples of Ceramic Materials
511(2)
13.7 Overview of High-Performance Ceramic Coating Materials
513(5)
13.7.1 Features of High-Performance Ceramic Coatings
514(1)
13.7.2 High-Performance Ceramic Coating---Thermal Barrier Coating
515(1)
13.7.2.1 Air Plasma-Sprayed (APS)
515(1)
13.7.2.2 Electron Beam Physical Vapor Deposition (EB-PVD)
516(2)
13.8 Mechanical Properties of High-Performance Ceramic Coatings
518(14)
13.8.1 Measurement of Coating's Modulus of Elasticity and Poisson's Ratio
518(1)
13.8.2 Measurement of TBC's Interface Adhesive Strength
519(3)
13.8.3 TBC's Four-Point Bending Test
522(2)
13.8.4 TBC's Thermal Fatigue Test
524(3)
13.8.5 TBC's Buckling Failure Test
527(1)
13.8.5.1 Specimen Preparation
527(1)
13.8.5.2 Tester
528(1)
13.8.5.3 Test Results
529(3)
Exercises
532(1)
References
533(2)
Chapter 14 Mechanical Properties of Composite Materials
535(30)
14.1 Introduction to Composite Materials
535(5)
14.1.1 What Are Composite Materials?
535(2)
14.1.2 Characteristics of Traditional and Composite Materials
537(1)
14.1.3 Reinforcement Phases (Fibers and Particles) and Metallic Matrix
538(2)
14.2 Mechanical Properties of Fiber-Reinforced Composite Materials
540(11)
14.2.1 Elastic Performance of Uniaxial Composite Materials
540(1)
14.2.1.1 Longitudinal Elastic Modulus
541(1)
14.2.1.2 Transverse Modulus of Elasticity
542(2)
14.2.1.3 Shear Modulus
544(1)
14.2.1.4 Poisson's Ratio
545(2)
14.2.2 Tensile Strength of Uniaxial Composite Materials
547(2)
14.2.3 Failure Characteristics of Fiber-Reinforced Composite Materials
549(2)
14.3 Mechanical Properties of Particle-Reinforced Composite Materials
551(8)
14.3.1 Strengthening Mechanisms in Particle-Reinforced Metallic Matrix Composite Materials
552(2)
14.3.2 Tensile and Fatigue Failure of PMMC Materials
554(2)
14.3.3 Thermal Fatigue Failure of PMMC under Laser Thermal Shock
556(3)
14.4 Applications and Prospects of the Development of Composite Materials
559(2)
14.4.1 Applications of Composite Materials
559(1)
14.4.2 Developmental Trends in Composite Materials
560(1)
Exercises
561(1)
References
561(4)
Index 565
Li Yang, Yichun Zhou, Yongli Huang