Muutke küpsiste eelistusi

E-raamat: Microarray Data Analysis: Methods and Applications

Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Microarray technologies are commonly used to examine the gene expression profiles of cells and tissues. In this volume, 16 contributions from international researchers cover a wide range of methods and applications used in the analysis of the massive amounts of data generated by microarray experiments. Sample topics include the application of regression methods to microarray data; the design of microarray time-series experiments; and the analysis of comparative genomic hybridization data on cDNA microarrays. Editor Korenberg teaches electrical and computer engineering at Queen's U. in Ontario, Canada. Annotation ©2007 Book News, Inc., Portland, OR (booknews.com)



In this new volume, renowned authors contribute fascinating, cutting-edge insights into microarray data analysis. This innovative book includes in-depth presentations of genomic signal processing, artificial neural network use for microarray data analysis, signal processing and design of microarray time series experiments, application of regression methods, gene expression profiles and prognostic markers for primary breast cancer, and factors affecting the cross-correlation of gene expression profiles. Also detailed are use of tiling arrays for large genome analysis, comparative genomic hybridization data on cDNA microarrays, integrated high-resolution genome-wide analysis of gene dosage and gene expression in human brain tumors, gene and MeSH ontology, and survival prediction in follicular lymphoma using tissue microarrays.