Muutke küpsiste eelistusi

E-raamat: Microbial Biotechnology

(University of East Anglia), (University of Lincoln), (University of East Anglia), (University of East Anglia)
  • Formaat: 224 pages
  • Sari: Oxford Biology Primers
  • Ilmumisaeg: 01-Dec-2020
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192555571
  • Formaat - PDF+DRM
  • Hind: 31,98 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 224 pages
  • Sari: Oxford Biology Primers
  • Ilmumisaeg: 01-Dec-2020
  • Kirjastus: Oxford University Press
  • Keel: eng
  • ISBN-13: 9780192555571

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Written primarily for students embarking on an undergraduate bioscience degree, this primer will introduce students to topics at the forefront of the subject that are being applied to probe biological problems, or to address the most pressing issues facing society. These topics will include those that form the cornerstone of contemporary research, helping students to make the transition to active researcher.

Students will acquire a solid understanding of the essentials of microbial biotechnology, its applications in agriculture, diagnostics and urban and artistic conservation, as well as the potential threats genetic modification may pose to public health, the environment and intellectual property.
1 The basic principles of a biotechnology process
1(27)
1.1 Overview of the biotechnology process
2(2)
1.2 The hosts
4(5)
1.3 Genetic manipulation
9(1)
1.4 Metabolic engineering
10(2)
1.5 Heterologous protein expression
12(1)
1.6 Fermentation media and media design
13(5)
1.7 Types of reactor
18(5)
1.8 Scale-up and optimization
23(2)
1.9 Downstream processing
25(3)
2 Microbial Growth
28(24)
2.1 Measurement of microbial growth
29(3)
2.2 Microbial growth in different culture systems
32(2)
2.3 Microbial growth phases in batch culture
34(2)
2.4 Cell division in the exponential growth phase
36(2)
2.5 Microbial growth rates
38(1)
2.6 Modelling microbial growth in batch culture
39(6)
2.7 Continuous culture
45(3)
2.8 Fed-batch culture
48(4)
3 Microbial bio-production
52(1)
3.1 Pharmaceutical products
53(16)
3.2 Fine chemicals
69(2)
3.3 Polymers
71(3)
3.4 Biofuels
74(4)
3.5 Bioelectrogenesis
78(4)
4 Biotechnology and food and drink production
82(1)
4.1 Microbes producing components for food
83(6)
4.2 Microbes used to make food
89(9)
4.3 Microbes used to make alcoholic beverages
98(5)
4.4 Microbes as food: single-cell protein
103(6)
4.5 Microbes producing food supplements
109(7)
5 Environmental biotechnology
116(16)
5.1 Wastewater treatment
117(2)
5.2 Anaerobic digestion of solid waste
119(2)
5.3 Hydrocarbon bioremediation
121(3)
5.4 Recovery of metals and bioleaching
124(2)
5.5 Environmental monitoring
126(2)
5.6 Gas bioscrubbing
128(1)
5.7 Bioaugmentation
129(3)
6 Application of synthetic biology to biotechnology
132(18)
6.1 Microorganisms widely used in synthetic biology
133(1)
6.2 Metabolic pathway modelling
134(2)
6.3 Gene synthesis
136(1)
6.4 Using biological parts to facilitate genetic manipulation of microbes
137(3)
6.5 Directed evolution of cells
140(1)
6.6 Modular protein assembly
141(1)
6.7 Compartmentalization of metabolic processes
142(2)
6.8 Synthetic cells
144(1)
6.9 Translation of synthetic biology to commercial applications
145(5)
7 Diagnostics
150(23)
7.1 Principles of diagnostics
151(4)
7.2 Mechanisms of detection
155(6)
7.3 Biosensors and their applications
161(9)
7.4 Detection of microbial cells
170(3)
8 Microbial biotechnology and agriculture
173(25)
8.1 The soil environment
174(3)
8.2 Microbial inoculants
177(11)
8.3 Microbial biopesticides
188(4)
8.4 Microbes as tools for genetic modification
192(6)
9 Using extremophiles in biotechnology
198(20)
9.1 Extreme temperature
200(6)
9.2 Extreme pressure
206(1)
9.3 Extreme pH
207(4)
9.4 Extreme osmotic pressure
211(7)
10 Microbial biotechnology in the art and built environment
218(20)
10.1 Biodeterioration
219(9)
10.2 Countering biodeterioration
228(4)
10.3 Creating and creativity
232(6)
11 Ethical considerations
238(11)
11.1 Some contexts for ethical consideration
240(5)
11.2 Some unethical contexts
245(4)
Glossary 249(6)
Bibliography 255(4)
Index 259
Professor Kay Yeoman teaches microbiology in the School of Biological Sciences at UEA. She has undertaken research in the use of agricultural waste materials in fermentation media. She has also conducted research in the Rhizobium:legume symbiosis, investigating the uptake of iron. She is keen communicator of science, leads fungal forays and is particularly interested in fungi and their use in industry.



Dr Beatrix Fahnert is a microbiologist with a background in medical, industrial and applied microbiology. She has been teaching related subjects at Undergraduate and Postgraduate level for more than 20 years, and is currently an Associate Professor at the School of Life Sciences, University of Lincoln. Beatrix is a member of the European Federation of Biotechnology and the UK Microbiology Society, where she served as Chair-Elect of the Education Division.



Dr David Lea-Smith is a lecturer in microbiology at the University of East Anglia. His research is primarily focused on investigating photosynthetic cyanobacteria, specifically understanding their biochemistry and physiology, impact on the environment and potential for biotechnology as a platform for renewable production of industrial and medical compounds.



Dr Tom Clarke graduated from UCL in Biochemistry and undertook a PhD at the John Innes centre in Norwich. After a research fellowship at the University of Michigan he joined UEA biological sciences in 2003. His current research involves uncovering how bacteria generate electricity in different environments.