Muutke küpsiste eelistusi

E-raamat: Microelectrofluidic Systems: Modeling and Simulation

(Duke University, Durham, North Carolina, USA), (Duke University, USA.), (Cadence Design Systems, Inc., Cary, North Carolina, USA)
  • Formaat - PDF+DRM
  • Hind: 273,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Composite systems that integrate microelectromechanical and microelectrofluidic (MEF) components with electronics are emerging as the next generation of system-on-a-chip (SOC) designs. However, there remains a pressing need for a structured methodology for MEFS design automation, including modeling techniques and simulation and optimization tools.

Integrating top-down and bottom-up design philosophies, Microelectrofluidic Systems presents the first comprehensive design strategy for MEFS. This strategy supports hierarchical modeling and simulation from the component level to the system level. It leads to multi-objective optimization tools valuable in all phases of the design process, from conceptualization to final manufacturing. The authors begin by defining the basic variables and elements needed to describe MEFS behavior, then model that behavior across three layers of abstraction: the low-level component, high-level reconfigurable architecture, and bio/chemical application layers. They have developed a hierarchical integrated design environment with SystemC and present its architecture and associated functional packages.

Microelectrofluidic Systems is visionary in its leverage of electronic design principles for microsystem design and heralds a new era of automated SOC design. The strategy it presents holds the potential for significant reductions in design time and life-cycle maintenance costs, and its techniques and tools for robust design and application flexibility can lead to the high-volume production needed for the inevitably growing product market.

Arvustused

"[ In this textbook] microelectrofluidic systems are thoroughly explained and defined in an understandable manner (which at times is challenging in an engineering text). highly informative in its descriptive premise of top-down modeling and simulationThis text opens up a number of directions for research into top-down design for microelectrofluidic systems. The information contained in the book will help achieve reduced costs and design stability for microelectrofluidic systems in an automated design market." - IEEE Engineering in Medicine and Biology

Preface xiii
List of Figures
xv
List of Tables
xxiii
Introduction
1(14)
Modeling and Simulation Issues
2(4)
Modeling and Simulation Needs
6(3)
Computational Architectures for MEFS
7(1)
Hierarchical Modeling and Simulation
7(1)
Advanced Hierarchical Design Methodology
8(1)
Hierarchical Design and Simulation Optimization
8(1)
System Design Language Uniformity
8(1)
Overview
9(6)
Hierarchical Modeling
15(24)
MEFS Dynamic Modeling and Simulation at Circuit Level
16(15)
Classification of Dynamic System Models
18(2)
Fundamental Variables
20(3)
Relationships between Fundamental Variables
23(4)
Kirchhoffian Networks
27(3)
The Equivalent Circuit Modeling Method
30(1)
MEFS System-level Modeling and Simulation
31(5)
MEFS System-level Modeling
32(3)
MEFS System-level Simulation
35(1)
Statistical Analysis Capacity
36(1)
Conclusion
36(3)
SystemC-based Hierarchical Design Environment
39(36)
Suitability of Modeling Languages for Hierarchical Design
41(25)
VHDL-AMS Suitability for Circuit-level Modeling and Simulation
41(6)
VHDL Suitability for System-level Modeling and Simulation
47(10)
Performance Language-SLAM
57(4)
C/C++ and Matlab
61(2)
SystemC
63(3)
Building Design Environment with SystemC
66(7)
Hierarchical Design Environment
66(1)
System-level Modeling Package
66(4)
Circuit-level Component Modeling Package
70(1)
Numerical Simulation Package
71(1)
Optimization/Verification Package
72(1)
Conclusion
73(2)
System-level Simulation and Performance Evaluation
75(34)
MEFS Computing and Architecture
76(10)
Architectural Concepts
77(1)
Architecture Proposal
78(1)
Reconfigurable Architectural Functional Requirements
79(1)
Potential Architecture
80(2)
Performance Modeling and Simulation
82(4)
Hierarchical Modeling and Simulation Methodology
86(3)
MEFS Hierarchical Perspective
86(1)
Hierarchical Performance Evaluation Strategy
87(1)
Modeling and Simulation Language
88(1)
Micro-Chemical Handling System -
89(11)
Stochastic Performance Modeling
90(5)
Thermal Catalyzing Process Functionality
95(2)
Microvalve Lumped-element Nodal Modeling
97(3)
System Performance Analysis and Design Optimization
100(6)
Architectural Optimization
100(3)
Microsystem Performance Sensitivity Analysis
103(2)
Microsystem Performance Estimation with Traffic Variation
105(1)
Conclusion
106(3)
Circuit-level Optimization
109(74)
Simulation Design Methodology
110(17)
Bootstrap Method
111(14)
Factorial Design
125(2)
Optimization Verification
127(3)
Subjective Verification
127(1)
Objective Verification
128(2)
On-target Design Optimization
130(12)
Statistical Modeling and Response Analyses
132(3)
Statistical Modeling of a Microvalve
135(3)
Search for On-target Design Point
138(2)
Sensitivity Analysis
140(2)
Robust Design Optimization
142(24)
Statistical Response Analysis
143(6)
Statistical Response Analysis of Microresonators
149(9)
Design Optimization of Microvalves
158(8)
Application Flexibility Optimization
166(15)
Design Approach
168(3)
Determining the Performance Flexibility
171(2)
Optimization Procedure
173(1)
Case Study: Microvalve Modeling and Optimal Design
174(7)
Conclusion
181(2)
Performance Evaluation
183(50)
Introduction
184(4)
Polymerase Chain Reaction (PCR)
184(1)
PCR Detection for DNA Concentration
185(2)
PCR Purification
187(1)
Acquisition Assumption
188(1)
Continuous-flow PCR System
188(18)
Three-way Microvalve
189(1)
Sequential Continuous-flow PCR System
189(5)
Detectable PCR System
194(7)
Reconfigurable PCR System
201(5)
Droplet-based PCR System
206(6)
A Droplet-based PCR System
206(1)
Physical Implementation
207(5)
Comparison between Continuous-flow PCR and Droplet PCR
212(4)
System Design Complexity
212(1)
Performance Evaluation
212(4)
Scheduling of Microfluidic Operations for Reconfigurable Two-Dimensional Electrowetting Arrays
216(17)
Introduction
219(1)
Two-dimensional Electrowetting Array
220(3)
Schedule Optimization
223(2)
Droplet-based PCR Systems
225(8)
Conclusion
233(4)
A VHDL Queuing Model 237(2)
B Hierarchical Environment with SystemC 239(4)
References 243(12)
Index 255


Tianhao Zhang, Krishnendu Chakrabarty, Richard B. Fair