Muutke küpsiste eelistusi

E-raamat: Microelectronic Circuits

, (Professor Emeritus in Electrical and Computer Engineering, Computer Science, Industrial and Mechanical Engineering, and Information Stud), (Distinguished Professor Emeritus of Electrical and Computer Engineering, University of Waterloo),
  • Formaat - EPUB+DRM
  • Hind: 74,52 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Microelectronic Circuits by Sedra and Smith has served generations of electrical and computer engineering students as the best and most widely-used text for this required course. Respected equally as a textbook and reference, "Sedra/Smith" combines a thorough presentation of fundamentals with an introduction to present-day IC technology. It remains the best text for helping students progress from circuit analysis to circuit design, developing design skills and insights that are essential to successful practice in the field. Significantly revised with the input of two new coauthors, slimmed down, and updated with the latest innovations, Microelectronic Circuits, Eighth Edition, remains the gold standard in providing the most comprehensive, flexible, accurate, and design-oriented treatment of electronic circuits available today.
Tables
xiv
Historical Notes xv
Preface xvii
PART I DEVICES AND BASIC CIRCUITS
2(477)
1 Signals, Amplifiers, and Semiconductors
4(86)
Introduction
5(1)
1.1 Signals
6(2)
1.2 Frequency Spectrum of Signals
8(3)
1.3 Analog and Digital Signals
11(4)
1.4 Amplifiers
15(7)
1.4.1 Signal Amplification
15(1)
1.4.2 Amplifier Circuit Symbol
16(1)
1.4.3 Voltage Gain
16(1)
1.4.4 Power Gain and Current Gain
17(1)
1.4.5 Expressing Gain in Decibels
17(1)
1.4.6 The Amplifier Power Supplies
18(2)
1.4.7 Amplifier Saturation
20(1)
1.4.8 Symbol Convention
20(2)
1.5 Circuit Models for Amplifiers
22(10)
1.5.1 Voltage Amplifiers
23(2)
1.5.2 Cascaded Amplifiers
25(2)
1.5.3 Other Amplifier Types
27(1)
1.5.4 Relationships between the Four Amplifier Models
27(1)
1.5.5 Determining Ri and Ro
28(1)
1.5.6 Unilateral Models
29(3)
1.6 Frequency Response of Amplifiers
32(10)
1.6.1 Measuring the Amplifier Frequency Response
32(1)
1.6.2 Amplifier Bandwidth
33(1)
1.6.3 Evaluating the Frequency Response of Amplifiers
33(1)
1.6.4 Single-Time-Constant Networks
34(6)
1.6.5 Classification of Amplifiers Based on Frequency Response
40(2)
1.7 Intrinsic Semiconductors
42(3)
1.8 Doped Semiconductors
45(3)
1.9 Current Flow in Semiconductors
48(6)
1.9.1 Drift Current
48(3)
1.9.2 Diffusion Current
51(3)
1.9.3 Relationship between D and μ
54(1)
1.10 The pn Junction
54(8)
1.10.1 Physical Structure
55(1)
1.10.2 Operation with Open-Circuit Terminals
55(7)
1.11 The pn Junction with an Applied Voltage
62(8)
1.11.1 Qualitative Description of Junction Operation
62(2)
1.11.2 The Current--Voltage Relationship of the Junction
64(5)
1.11.3 Reverse Breakdown
69(1)
1.12 Capacitive Effects in the pn Junction
70(20)
1.12.1 Depletion or Junction Capacitance
70(2)
1.12.2 Diffusion Capacitance
72(1)
Summary
73(2)
Problems
75(15)
2 Operational Amplifiers
90(76)
Introduction
91(1)
2.1 The Ideal Op Amp
91(5)
2.1.1 The Op-Amp Terminals
91(1)
2.1.2 Function and Characteristics of the Ideal Op Amp
92(2)
2.1.3 Differential and Common-Mode Signals
94(2)
2.2 The Inverting Configuration
96(9)
2.2.1 The Closed-Loop Gain
96(2)
2.2.2 Effect of Finite Open-Loop Gain
98(2)
2.2.3 Input and Output Resistances
100(3)
2.2.4 An Important Application: The Weighted Summer
103(2)
2.3 The Noninverting Configuration
105(4)
2.3.1 The Closed-Loop Gain
105(2)
2.3.2 Effect of Finite Open-Loop Gain
107(1)
2.3.3 Input and Output Resistance
107(1)
2.3.4 The Voltage Follower
108(1)
2.4 Difference Amplifiers
109(9)
2.4.1 A Single-Op-Amp Difference Amplifier
110(4)
2.4.2 A Superior Circuit: The Instrumentation Amplifier
114(4)
2.5 Integrators and Differentiators
118(10)
2.5.1 The Inverting Configuration with General Impedances
119(2)
2.5.2 The Inverting Integrator
121(5)
2.5.3 The Op-Amp Differentiator
126(2)
2.6 DC Imperfections
128(8)
2.6.1 Offset Voltage
128(4)
2.6.2 Input Bias and Offset Currents
132(3)
2.6.3 Effect of Vos and Ios on the Operation of the Inverting Integrator
135(1)
2.7 Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance
136(5)
2.7.1 Frequency Dependence of the Open-Loop Gain
136(3)
2.7.2 Frequency Response of Closed-Loop Amplifiers
139(2)
2.8 Large-Signal Operation of Op Amps
141(25)
2.8.1 Output Voltage Saturation
142(1)
2.8.2 Output Current Limits
142(1)
2.8.3 Slew Rate
143(4)
Summary
147(1)
Problems
148(18)
3 Diodes
166(66)
Introduction
167(1)
3.1 The Ideal Diode
167(8)
3.1.1 Current---Voltage Characteristic
167(2)
3.1.2 The Rectifier
169(3)
3.1.3 Limiting and Protection Circuits
172(3)
3.2 Terminal Characteristics of Junction Diodes
175(6)
3.2.1 The Forward-Bias Region
175(5)
3.2.2 The Reverse-Bias Region
180(1)
3.2.3 The Breakdown Region
180(1)
3.3 Modeling the Diode
181(6)
3.3.1 The Exponential Model
181(1)
3.3.2 Graphical Analysis Using the Exponential Model
181(1)
3.3.3 Iterative Analysis Using the Exponential Model
182(1)
3.3.4 The Need for Rapid Analysis
183(1)
3.3.5 The Constant-Voltage-Drop Model
183(1)
3.3.6 The Ideal-Diode Model
184(2)
3.3.7 Operation in the Reverse Breakdown Region
186(1)
3.4 The Small-Signal Model
187(5)
3.5 Voltage Regulation
192(5)
3.6 Rectifier Circuits
197(14)
3.6.1 The Half-Wave Rectifier
198(2)
3.6.2 The Full-Wave Rectifier
200(1)
3.6.3 The Bridge Rectifier
201(2)
3.6.4 The Rectifier with a Filter Capacitor---The Peak Rectifier
203(7)
3.6.5 Precision Half-Wave Rectifier---The Superdiode
210(1)
3.7 Other Diode Applications
211(21)
3.7.1 The Clamped Capacitor and Bootstrapping
212(1)
3.7.2 The Voltage Doubler
213(1)
3.7.3 Varactors
214(1)
3.7.4 Photodiodes
214(2)
3.7.5 Light-Emitting Diodes (LEDs)
216(2)
Summary
218(1)
Problems
219(13)
4 Bipolar Junction Transistors (BJTs)
232(60)
Introduction
233(1)
4.1 Device Structure and Physical Operation
233(14)
4.1.1 Simplified Structure and Modes of Operation
233(2)
4.1.2 Operation of the npn Transistor in the Active Mode
235(8)
4.1.3 Structure of Actual Transistors
243(1)
4.1.4 Operation in the Saturation Mode
243(2)
4.1.5 The pnp Transistor
245(2)
4.2 Current--Voltage Characteristics
247(13)
4.2.1 Circuit Symbols and Conventions
247(5)
4.2.2 Graphical Representation of Transistor Characteristics
252(1)
4.2.3 Dependence of ic on the Collector Voltage---The Early Effect
253(3)
4.2.4 An Alternative Form of the Common-Emitter Characteristics
256(4)
4.3 BJT Circuits at DC
260(18)
4.4 Transistor Breakdown and Temperature Effects
278(14)
4.4.1 Transistor Breakdown
278(2)
4.4.2 Dependence of β on Ic and Temperature
280(1)
Summary
281(1)
Problems
281(11)
5 MOS Field-Effect Transistors (MOSFETs)
292(58)
Introduction
293(1)
5.1 Device Structure and Physical Operation
294(15)
5.1.1 Device Structure
294(2)
5.1.2 Operation with Zero Gate Voltage
296(1)
5.1.3 Creating a Channel for Current Flow
296(2)
5.1.4 Applying a Small vDS
298(3)
5.1.5 Operation as vDS Is Increased
301(1)
5.1.6 Operation for uDS ≥ uov: Channel Pinch-Off and Current Saturation
302(4)
5.1.7 The p-Channel MOSFET
306(2)
5.1.8 Complementary MOS or CMOS
308(1)
5.2 Current--Voltage Characteristics
309(11)
5.2.1 Circuit Symbol
309(1)
5.2.2 The iD--uDS Characteristics
310(1)
5.2.3 The iD--uGS Characteristic
311(4)
5.2.4 Finite Output Resistance in Saturation
315(3)
5.2.5 Characteristics of the p-Channel MOSFET
318(2)
5.3 MOSFET Circuits at DC
320(11)
5.4 Technology Scaling (Moore's Law) and Other Topics
331(19)
5.4.1 Technology Scaling
331(3)
5.4.2 Subthreshold Conduction and Leakage Currents
334(1)
5.4.3 The Role of the Substrate---The Body Effect
335(1)
5.4.4 Temperature Effects
336(1)
5.4.5 Breakdown and Input Protection
336(1)
5.4.6 The Depletion-Type MOSFET
337(1)
Summary
338(1)
Problems
339(11)
6 Transistor Amplifiers
350(129)
Introduction
351(1)
6.1 Basic Principles
351(14)
6.1.1 The Basis for Amplifier Operation
351(1)
6.1.2 Obtaining a Voltage Amplifier
352(2)
6.1.3 The Voltage-Transfer Characteristic (VTC)
354(1)
6.1.4 Obtaining Linear Amplification by Biasing the Transistor
355(2)
6.1.5 The Small-Signal Voltage Gain
357(6)
6.1.6 Determining the VTC by Graphical Analysis
363(2)
6.1.7 Deciding on a Location for the Bias Point Q
365(1)
6.2 Small-Signal Operation and Models
365(37)
6.2.1 The MOSFET Case
366(15)
6.2.2 The BJT Case
381(20)
6.2.3 Summary Tables
401(1)
6.3 Basic Configurations
402(30)
6.3.1 The Three Basic Configurations
402(1)
6.3.2 Characterizing Amplifiers
403(2)
6.3.3 The Common-Source (CS) and Common-Emitter (CE) Amplifiers
405(6)
6.3.4 The Common-Source (Common-Emitter) Amplifier with a Source (Emitter) Resistance
411(7)
6.3.5 The Common-Gate (CG) and the Common-Base (CB) Amplifiers
418(3)
6.3.6 The Source and Emitter Followers
421(10)
6.3.7 Summary Tables and Comparisons
431(1)
6.3.8 When and How to Include the Output Resistance ro
431(1)
6.4 Biasing
432(12)
6.4.1 The MOSFET Case
433(6)
6.4.2 The BJT Case
439(5)
6.5 Discrete-Circuit Amplifiers
444(35)
6.5.1 A Common-Source (CS) Amplifier
445(2)
6.5.2 A Common-Emitter Amplifier
447(2)
6.5.3 A Common-Emitter Amplifier with an Emitter Resistance Re
449(2)
6.5.4 A Common-Base (CB) Amplifier
451(1)
6.5.5 An Emitter Follower
452(2)
6.5.6 The Amplifier Frequency Response
454(1)
Summary
455(1)
Problems
456(23)
PART II ANALOG INTEGRATED CIRCUITS
479(597)
7 Building Blocks of Integrated-Circuit Amplifiers
481(72)
Introduction
482(1)
7.1 IC Design Philosophy
482(2)
7.2 IC Biasing: Current Sources and Current Mirrors
484(14)
7.2.1 The Basic MOSFET Current Source
484(1)
7.2.2 The MOS Current Mirror
485(3)
7.2.3 MOS Current-Steering Circuits
488(2)
7.2.4 BJT Circuits
490(5)
7.2.5 Small-Signal Operation of Current Mirrors
495(3)
7.3 The Basic Gain Cell
498(10)
7.3.1 The CS and CE Amplifiers with Current-Source Loads
498(1)
7.3.2 The Intrinsic Gain
499(3)
7.3.3 Effect of the Output Resistance of the Current-Source Load
502(4)
7.3.4 Increasing the Gain of the Basic Cell
506(2)
7.4 The Common-Gate and Common-Base Amplifiers as Current Buffers
508(10)
7.4.1 The CG Circuit
508(4)
7.4.2 Output Resistance of a CS Amplifier with a Source Resistance
512(1)
7.4.3 The Body Effect in the CG Amplifier
513(1)
7.4.4 The CB Circuit
514(3)
7.4.5 Output Resistance of the Emitter-Degenerated CE Amplifier
517(1)
7.5 The Cascode Amplifier
518(9)
7.5.1 The MOS Cascode Amplifier
518(5)
7.5.2 Distribution of Voltage Gain in a Cascode Amplifier
523(2)
7.5.3 The BJT Cascode
525(2)
7.6 The IC Source Follower
527(2)
7.7 Current-Mirror Circuits with Improved Performance
529(24)
7.7.1 The Cascode MOS Mirror
530(1)
7.7.2 The Wilson BJT Current Mirror
531(3)
7.7.3 The Wilson MOS Mirror
534(2)
7.7.4 The Widlar Current Source
536(2)
Summary
538(1)
Problems
539(14)
8 Differential and Multistage Amplifiers
553(96)
Introduction
554(1)
8.1 The MOS Differential Pair
554(19)
8.1.1 Operation with a Common-Mode Input Voltage
555(5)
8.1.2 Operation with a Differential Input Voltage
560(1)
8.1.3 Large-Signal Operation
561(4)
8.1.4 Small-Signal Operation
565(5)
8.1.5 The Differential Amplifier with Current-Source Loads
570(1)
8.1.6 Cascode Differential Amplifier
571(2)
8.2 The BJT Differential Pair
573(13)
8.2.1 Basic Operation
573(2)
8.2.2 Input Common-Mode Range
575(1)
8.2.3 Large-Signal Operation
576(3)
8.2.4 Small-Signal Operation
579(7)
8.3 Common-Mode Rejection
586(9)
8.3.1 The MOS Case
586(6)
8.3.2 The BJT Case
592(3)
8.4 DC Offset
595(7)
8.4.1 Input Offset Voltage of the MOS Differential Amplifier
595(4)
8.4.2 Input Offset Voltage of the Bipolar Differential Amplifier
599(2)
8.4.3 Input Bias and Offset Currents of the Bipolar Differential Amplifier
601(1)
8.4.4 A Concluding Remark
602(1)
8.5 The Differential Amplifier with a Current-Mirror Load
602(13)
8.5.1 Differential-to-Single-Ended Conversion
603(1)
8.5.2 The Current-Mirror-Loaded MOS Differential Pair
603(3)
8.5.3 Differential Gain of the Current-Mirror-Loaded MOS Pair
606(4)
8.5.4 The Bipolar Differential Pair with a Current-Mirror Load
610(2)
8.5.5 Common-Mode Gain and CMRR
612(3)
8.6 Multistage Amplifiers
615(34)
8.6.1 A Two-Stage CMOS Op Amp
616(4)
8.6.2 A Bipolar Op Amp
620(9)
Summary
629(1)
Problems
630(19)
9 Frequency Response
649(106)
Introduction
650(1)
9.1 High-Frequency Transistor Models
651(10)
9.1.1 The MOSFET
652(4)
9.1.2 The BJT
656(5)
9.2 High-Frequency Response of CS and CE Amplifiers
661(18)
9.2.1 Frequency Response of the Low-Pass Single-Time-Constant Circuit
661(1)
9.2.2 The Common-Source Amplifier
662(5)
9.2.3 Frequency Response of the CS Amplifier When Rsig Is Low
667(4)
9.2.4 The Common-Emitter Amplifier
671(4)
9.2.5 Miller's Theorem
675(4)
9.3 The Method of Open-Circuit Time Constants
679(7)
9.3.1 The High-Frequency Gain Function
679(1)
9.3.2 Determining the 3-dB Frequency fH
680(1)
9.3.3 Applying the Method of Open-Circuit Time Constants to the CS Amplifier
681(4)
9.3.4 Application of the Method of Open-Circuit Time Constants to the CE Amplifier
685(1)
9.4 High-Frequency Response of Common-Gate and Cascode Amplifiers
686(12)
9.4.1 High-Frequency Response of the CG Amplifier
686(6)
9.4.2 High-Frequency Response of the MOS Cascode Amplifier
692(5)
9.4.3 High-Frequency Response of the Bipolar Cascode Amplifier
697(1)
9.5 High-Frequency Response of Source and Emitter Followers
698(8)
9.5.1 The Source-Follower Case
699(6)
9.5.2 The Emitter-Follower Case
705(1)
9.6 High-Frequency Response of Differential Amplifiers
706(10)
9.6.1 Analysis of the Resistively Loaded MOS Amplifier
706(5)
9.6.2 Frequency Response of the Current-Mirror-Loaded MOS Differential Amplifier
711(5)
9.7 Other Wideband Amplifier Configurations
716(10)
9.7.1 Obtaining Wideband Amplification by Source or Emitter Degeneration
716(3)
9.7.2 Increasing fH by Buffering the Input Signal Source
719(4)
9.7.3 Increasing fH by Eliminating the Miller Effect Using a CG or a CB Configuration with an Input Buffer
723(3)
9.8 Low-Frequency Response of Discrete-Circuit CS and CE Amplifiers
726(29)
9.8.1 Frequency Response of the High-Pass Single-Time-Constant Circuit
726(1)
9.8.2 The CS Amplifier
727(7)
9.8.3 The Method of Short-Circuit Time Constants
734(1)
9.8.4 The CE Amplifier
735(4)
Summary
739(1)
Problems
740(15)
10 Feedback
755(102)
Introduction
756(1)
10.1 The General Feedback Structure
757(7)
10.1.1 Signal-Flow Diagram
757(1)
10.1.2 The Closed-Loop Gain
758(1)
10.1.3 The Loop Gain
759(1)
10.1.4 The Ideal Case of Infinite Open-Loop Gain A
760(4)
10.1.5 Summary
764(1)
10.2 Some Properties of Negative Feedback
764(4)
10.2.1 Gain Desensitivity
764(1)
10.2.2 Bandwidth Extension
765(1)
10.2.3 Reduction in Nonlinear Distortion
766(2)
10.3 The Feedback Voltage Amplifier
768(10)
10.3.1 The Series--Shunt Feedback Topology
768(1)
10.3.2 Examples of Series--Shunt Feedback Amplifiers
769(2)
10.3.3 Analysis of the Feedback Voltage Amplifier
771(6)
10.3.4 A Final Remark
777(1)
10.4 Systematic Analysis of Feedback Voltage Amplifiers
778(11)
10.4.1 The Ideal Case
778(2)
10.4.2 The Practical Case
780(9)
10.5 Other Feedback-Amplifier Types
789(25)
10.5.1 Basic Principles
789(3)
10.5.2 The Feedback Transconductance Amplifier (Series--Series)
792(10)
10.5.3 The Feedback Transresistance Amplifier (Shunt--Shunt)
802(7)
10.5.4 The Feedback Current Amplifier (Shunt--Series)
809(5)
10.6 Summary of the Feedback-Analysis Method
814(1)
10.7 The Stability Problem
814(3)
10.8 Effect of Feedback on the Amplifier Poles
817(7)
10.8.1 Stability and Pole Location
817(1)
10.8.2 Poles of the Feedback Amplifier
817(1)
10.8.3 Amplifiers with a Single-Pole Response
818(2)
10.8.4 Amplifiers with a Two-Pole Response
820(2)
10.8.5 Amplifiers with Three or More Poles
822(2)
10.9 Stability Study Using Bode Plots
824(5)
10.9.1 Gain and Phase Margins
824(1)
10.9.2 Effect of Phase Margin on Closed-Loop Response
825(1)
10.9.3 An Alternative Approach for Investigating Stability
826(3)
10.10 Frequency Compensation
829(28)
10.10.1 Theory
829(1)
10.10.2 Implementation
830(1)
10.10.3 Miller Compensation and Pole Splitting
831(4)
Summary
835(1)
Problems
836(21)
11 Output Stages and Power Amplifiers
857(49)
Introduction
858(1)
11.1 Classification of Output Stages
858(2)
11.2 Class A Output Stage
860(7)
11.2.1 Transfer Characteristic
860(3)
11.2.2 Signal Waveforms
863(1)
11.2.3 Power Dissipation
864(2)
11.2.4 Power-Conversion Efficiency
866(1)
11.3 Class B Output Stage
867(5)
11.3.1 Circuit Operation
867(1)
11.3.2 Transfer Characteristic
867(1)
11.3.3 Power-Conversion Efficiency
868(1)
11.3.4 Power Dissipation
869(3)
11.4 Class AB Output Stage
872(5)
11.4.1 Circuit Operation
872(2)
11.4.2 Output Resistance
874(3)
11.5 Biasing the Class AB Circuit
877(8)
11.5.1 Biasing Using Diodes
877(2)
11.5.2 Biasing Using the VBE Multiplier
879(3)
11.5.3 Use of Input Emitter Followers
882(1)
11.5.4 Use of Compound Devices
883(2)
11.6 CMOS Output Stages
885(9)
11.6.1 The Source Follower
886(1)
11.6.2 An Alternative Using a Common-Source Transistor
887(4)
11.6.3 Class D Power Amplifiers
891(3)
11.7 Power Transistors
894(12)
11.7.1 Packages and Heat Sinks
894(1)
11.7.2 Power BJTs
894(1)
11.7.3 Power MOSFETs
895(2)
Summary
897(1)
Problems
898(8)
12 Operational-Amplifier Circuits
906(68)
Introduction
907(1)
12.1 The Two-Stage CMOS Op Amp
908(17)
12.1.1 The Circuit
908(1)
12.1.2 Input Common-Mode Range and Output Swing
909(1)
12.1.3 DC Voltage Gain
910(2)
12.1.4 Common-Mode Rejection Ratio (CMRR)
912(1)
12.1.5 Frequency Response
913(5)
12.1.6 Slew Rate
918(1)
12.1.7 Power-Supply Rejection Ratio (PSRR)
919(1)
12.1.8 Design Trade-Offs
920(5)
12.2 The Folded-Cascode CMOS OpAmp
925(12)
12.2.1 The Circuit
926(1)
12.2.2 Input Common-Mode Range and Output Swing
927(2)
12.2.3 Voltage Gain
929(2)
12.2.4 Frequency Response
931(1)
12.2.5 Slew Rate
932(2)
12.2.6 Increasing the Input Common-Mode Range: Rail-to-Rail Input Operation
934(1)
12.2.7 Increasing the Output Voltage Range: The Wide-Swing Current Mirror
935(2)
12.3 BJT Op-Amp Techniques
937(37)
12.3.1 Bias Design
938(1)
12.3.2 Design of the Input Stage
939(7)
12.3.3 Common-Mode Feedback to Control the DC Voltage at the Output of the Input Stage
946(4)
12.3.4 The 741 Op Amp Input Stage
950(9)
12.3.5 Output-Stage Design for Near Rail-to-Rail Output Swing
959(5)
Summary
964(1)
Problems
964(10)
13 Filters and Oscillators
974(102)
Introduction
975(1)
13.1 Basic Filter Concepts
976(5)
13.1.1 Filter Transmission
976(1)
13.1.2 Filter Types
976(1)
13.1.3 Filter Specification
977(2)
13.1.4 Obtaining the Filter Transfer Function: Filter Approximation
979(1)
13.1.5 Obtaining the Filter Circuit: Filter Realization
980(1)
13.2 The Filter Transfer Function
981(10)
13.2.1 The Filter Order
981(1)
13.2.2 The Filter Poles
981(1)
13.2.3 The Filter Transmission Zeros
982(2)
13.2.4 All-Pole Filters
984(1)
13.2.5 Factoring T(s) into the Product of First-Order and Second-Order Functions
985(1)
13.2.6 First-Order Filters
986(2)
13.2.7 Second-Order Filter Functions
988(3)
13.3 Butterworth and Chebyshev Filters
991(9)
13.3.1 The Butterworth Filter
991(6)
13.3.2 The Chebyshev Filter
997(3)
13.4 Second-Order Passive Filters Based on the LCR Resonator
1000(4)
13.4.1 The Resonator Poles
1000(1)
13.4.2 Realization of Transmission Zeros
1001(1)
13.4.3 Realization of the Low-Pass Function
1002(1)
13.4.4 Realization of the Bandpass Function
1002(1)
13.4.5 Realization of the Notch Functions
1002(2)
13.5 Second-Order Active Filters Based on Inductance Simulation
1004(7)
13.5.1 The Antoniou Inductance-Simulation Circuit
1005(1)
13.5.2 The Op Amp-RC Resonator
1005(2)
13.5.3 Realization of the Various Filter Types
1007(4)
13.6 Second-Order Active Filters Based on the Two-Integrator Loop
1011(7)
13.6.1 Derivation of the Two-Integrator-Loop Biquad
1011(2)
13.6.2 Circuit Implementation
1013(1)
13.6.3 An Alternative Two-Integrator-Loop Biquad Circuit
1014(2)
13.6.4 Final Remarks
1016(2)
13.7 Second Order Active Filters Using a Single Op Amp
1018(5)
13.7.1 Bandpass Circuit
1018(2)
13.7.2 High-Pass Circuit
1020(1)
13.7.3 Low-Pass Circuit
1021(2)
13.8 Switched-Capacitor Filters
1023(5)
13.8.1 The Basic Principle
1023(1)
13.8.2 Switched-Capacitor Integrator
1024(1)
13.8.3 Switched-Capacitor Biquad Filter
1025(3)
13.8.4 Final Remarks
1028(1)
13.9 Basic Principles of Sinusoidal Oscillators
1028(8)
13.9.1 The Oscillator Feedback Loop
1028(1)
13.9.2 The Oscillation Criterion
1029(1)
13.9.3 Analysis of Oscillator Circuits
1030(4)
13.9.4 Nonlinear Amplitude Control
1034(2)
13.10 Op Amp-RC Oscillator Circuits
1036(8)
13.10.1 The Wien-Bridge Oscillator
1036(3)
13.10.2 The Phase-Shift Oscillator
1039(2)
13.10.3 The Quadrature Oscillator
1041(1)
13.10.4 The Active-Filter-Tuned Oscillator
1042(2)
13.10.5 A Final Remark
1044(1)
13.11 LC and Crystal Oscillators
1044(8)
13.11.1 The Colpitts and Hartely Oscillators
1044(4)
13.11.2 The Cross-Coupled LC Oscillator
1048(2)
13.11.3 Crystal Oscillators
1050(2)
13.12 Nonlinear Oscillators or Function Generators
1052(24)
13.12.1 The Bistable Feedback Loop
1052(2)
13.12.2 Transfer Characteristic of the Bistable Circuit
1054(1)
13.12.3 Triggering the Bistable Circuit
1055(1)
13.12.4 The Bistable Circuit as a Memory Element
1055(1)
13.12.5 A Bistable Circuit with Noninverting Transfer Characteristic
1056(1)
13.12.6 Generating Square Waveforms Using a Bistable Circuit
1057(3)
13.12.7 Generating Triangular Waveforms
1060(2)
13.12.8 Generation of Sine Waves
1062(1)
Summary
1062(1)
Problems
1063(13)
PART III DIGITAL INTEGRATED CIRCUITS
1076
14 CMOS Digital Logic Circuits
1078(39)
Introduction
1079(1)
14.1 CMOS Logic-Gate Circuits
1079(10)
14.1.1 Switch-Level Transistor Model
1079(1)
14.1.2 The CMOS Inverter
1079(1)
14.1.3 General Structure of CMOS Logic
1080(4)
14.1.4 The Two-Input NOR Gate
1084(1)
14.1.5 The Two-Input NAND Gate
1084(1)
14.1.6 A Complex Gate
1085(1)
14.1.7 Obtaining the PUN from the PDN and Vice Versa
1085(1)
14.1.8 The Exclusive-OR Function
1086(1)
14.1.9 Surnmaryofthe Synthesis Method
1087(2)
14.2 Digital Logic Inverters
1089(12)
14.2.1 The Voltage-Transfer Characteristic (VTC)
1089(1)
14.2.2 Noise Margins
1090(2)
14.2.3 The Ideal VTC
1092(1)
14.2.4 Inverter Implementation
1093(8)
14.3 The CMOS Inverter
1101(16)
14.3.1 Circuit Operation
1102(2)
14.3.2 The Voltage-Transfer Characteristic (VTC)
1104(3)
14.3.3 The Situation When QN and QP Are Not Matched
1107(5)
Summary
1112(1)
Problems
1113(4)
15 Digital Design: Power, Speed, and Area
1117(42)
Introduction
1118(1)
15.1 Dynamic Operation of the CMOS Inverter
1118(14)
15.1.1 Propagation Delay
1118(4)
15.1.2 Determining the Propagation Delay of the CMOS Inverter
1122(7)
15.1.3 Determining the Equivalent Load Capacitance C
1129(3)
15.2 Transistor Sizing
1132(10)
15.2.1 Inverter Sizing
1133(2)
15.2.2 Transistor Sizing in CMOS Logic Gates
1135(3)
15.2.3 Effects of Fan-In and Fan-Out on Propagation Delay
1138(1)
15.2.4 Driving a Large Capacitance
1139(3)
15.3 Power Dissipation
1142(5)
15.3.1 Sources of Power Dissipation
1142(4)
15.3.2 Power-Delay and Energy-Delay Products
1146(1)
15.4 Implications of Technology Scaling: Issues in Deep-Submicron Design
1147(12)
15.4.1 Silicon Area
1147(1)
15.4.2 Scaling Implications
1147(2)
15.4.3 Temperature, Voltage, and Process Variations
1149(1)
15.4.4 Wiring: The Interconnect
1149(1)
15.4.5 Digital Design in Modern Technologies
1150(1)
Summary
1151(2)
Problems
1153(6)
16 Memory and Clocking Circuits
1159
Introduction
1160(1)
16.1 The Transmission Gate
1160(12)
16.1.1 Operation with NMOS Transistors as Switches
1161(4)
16.1.2 Restoring the Value of VOH to VDD
1165(1)
16.1.3 The Use of CMOS Transmission Gates as Switches
1166(6)
16.2 Latches and Flip-Flops
1172(11)
16.2.1 The Latch
1172(2)
16.2.2 The SR Flip-Flop
1174(1)
16.2.3 CMOS Implementation of SR Flip-Flops
1175(5)
16.2.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop
1180(1)
16.2.5 D Flip-Flop Circuits
1180(3)
16.3 Random-Access Memory (RAM) Cells
1183(13)
16.3.1 Static Memory (SRAM) Cell
1185(7)
16.3.2 Dynamic Memory (DRAM) Cell
1192(2)
16.3.3 Flash Memory
1194(2)
16.4 Ring Oscillators and Special-Purpose Circuits
1196
16.4.1 Ring Oscillators and Other Pulse-Generation Circuits
1196(2)
16.4.2 The Sense Amplifier
1198(5)
16.4.3 The Row-Address Decoder
1203(2)
16.4.4 The Column-Address Decoder
1205(1)
Summary
1206(1)
Problems
1207
Appendices
A VLSI Fabrication Technology*
1(1)
B SPICE Device Models and Design with Simulation Examples*
1(1)
C Two-Port Network Parameters*
1(1)
D Some Useful Network Theorems*
1(1)
E Single-Time-Constant Circuits*
1(1)
F s-Domain Analysis: Poles, Zeros, and Bode Plots*
1(1)
G Comparison of the MOSFET and the BJT*
1(1)
H Filter Design Material*
1(1)
I Bibliography*
1(1)
J Standard Resistance Values and Unit Prefixes
1(1)
K Typical Parameter Values for IC Devices Fabricated in CMOS and Bipolar Processes
1(1)
L Answers to Selected Problems*
1(1)
Summary Tables*
Index 1
Adel S. Sedra is Distinguished Professor Emeritus of Electrical and Computer Engineering at the University of Waterloo and Distinguished Fellow, University Leadership, at Ryerson University.

Kenneth C. (KC) Smith is Professor Emeritus in Electrical and Computer Engineering, Computer Science, Industrial and Mechanical Engineering, and Information Studies at the University of Toronto.

Tony Chan Carusone is Professor of Electrical and Computer Engineering at the University of Toronto.

Vincent Gaudet is Professor and Chair in the Department of Electrical and Computer Engineering at the University of Waterloo.