|
|
xiv | |
Historical Notes |
|
xv | |
Preface |
|
xvii | |
|
PART I DEVICES AND BASIC CIRCUITS |
|
|
2 | (477) |
|
1 Signals, Amplifiers, and Semiconductors |
|
|
4 | (86) |
|
|
5 | (1) |
|
|
6 | (2) |
|
1.2 Frequency Spectrum of Signals |
|
|
8 | (3) |
|
1.3 Analog and Digital Signals |
|
|
11 | (4) |
|
|
15 | (7) |
|
1.4.1 Signal Amplification |
|
|
15 | (1) |
|
1.4.2 Amplifier Circuit Symbol |
|
|
16 | (1) |
|
|
16 | (1) |
|
1.4.4 Power Gain and Current Gain |
|
|
17 | (1) |
|
1.4.5 Expressing Gain in Decibels |
|
|
17 | (1) |
|
1.4.6 The Amplifier Power Supplies |
|
|
18 | (2) |
|
1.4.7 Amplifier Saturation |
|
|
20 | (1) |
|
|
20 | (2) |
|
1.5 Circuit Models for Amplifiers |
|
|
22 | (10) |
|
|
23 | (2) |
|
1.5.2 Cascaded Amplifiers |
|
|
25 | (2) |
|
1.5.3 Other Amplifier Types |
|
|
27 | (1) |
|
1.5.4 Relationships between the Four Amplifier Models |
|
|
27 | (1) |
|
1.5.5 Determining Ri and Ro |
|
|
28 | (1) |
|
|
29 | (3) |
|
1.6 Frequency Response of Amplifiers |
|
|
32 | (10) |
|
1.6.1 Measuring the Amplifier Frequency Response |
|
|
32 | (1) |
|
1.6.2 Amplifier Bandwidth |
|
|
33 | (1) |
|
1.6.3 Evaluating the Frequency Response of Amplifiers |
|
|
33 | (1) |
|
1.6.4 Single-Time-Constant Networks |
|
|
34 | (6) |
|
1.6.5 Classification of Amplifiers Based on Frequency Response |
|
|
40 | (2) |
|
1.7 Intrinsic Semiconductors |
|
|
42 | (3) |
|
|
45 | (3) |
|
1.9 Current Flow in Semiconductors |
|
|
48 | (6) |
|
|
48 | (3) |
|
|
51 | (3) |
|
1.9.3 Relationship between D and μ |
|
|
54 | (1) |
|
|
54 | (8) |
|
1.10.1 Physical Structure |
|
|
55 | (1) |
|
1.10.2 Operation with Open-Circuit Terminals |
|
|
55 | (7) |
|
1.11 The pn Junction with an Applied Voltage |
|
|
62 | (8) |
|
1.11.1 Qualitative Description of Junction Operation |
|
|
62 | (2) |
|
1.11.2 The Current--Voltage Relationship of the Junction |
|
|
64 | (5) |
|
|
69 | (1) |
|
1.12 Capacitive Effects in the pn Junction |
|
|
70 | (20) |
|
1.12.1 Depletion or Junction Capacitance |
|
|
70 | (2) |
|
1.12.2 Diffusion Capacitance |
|
|
72 | (1) |
|
|
73 | (2) |
|
|
75 | (15) |
|
|
90 | (76) |
|
|
91 | (1) |
|
|
91 | (5) |
|
2.1.1 The Op-Amp Terminals |
|
|
91 | (1) |
|
2.1.2 Function and Characteristics of the Ideal Op Amp |
|
|
92 | (2) |
|
2.1.3 Differential and Common-Mode Signals |
|
|
94 | (2) |
|
2.2 The Inverting Configuration |
|
|
96 | (9) |
|
2.2.1 The Closed-Loop Gain |
|
|
96 | (2) |
|
2.2.2 Effect of Finite Open-Loop Gain |
|
|
98 | (2) |
|
2.2.3 Input and Output Resistances |
|
|
100 | (3) |
|
2.2.4 An Important Application: The Weighted Summer |
|
|
103 | (2) |
|
2.3 The Noninverting Configuration |
|
|
105 | (4) |
|
2.3.1 The Closed-Loop Gain |
|
|
105 | (2) |
|
2.3.2 Effect of Finite Open-Loop Gain |
|
|
107 | (1) |
|
2.3.3 Input and Output Resistance |
|
|
107 | (1) |
|
2.3.4 The Voltage Follower |
|
|
108 | (1) |
|
2.4 Difference Amplifiers |
|
|
109 | (9) |
|
2.4.1 A Single-Op-Amp Difference Amplifier |
|
|
110 | (4) |
|
2.4.2 A Superior Circuit: The Instrumentation Amplifier |
|
|
114 | (4) |
|
2.5 Integrators and Differentiators |
|
|
118 | (10) |
|
2.5.1 The Inverting Configuration with General Impedances |
|
|
119 | (2) |
|
2.5.2 The Inverting Integrator |
|
|
121 | (5) |
|
2.5.3 The Op-Amp Differentiator |
|
|
126 | (2) |
|
|
128 | (8) |
|
|
128 | (4) |
|
2.6.2 Input Bias and Offset Currents |
|
|
132 | (3) |
|
2.6.3 Effect of Vos and Ios on the Operation of the Inverting Integrator |
|
|
135 | (1) |
|
2.7 Effect of Finite Open-Loop Gain and Bandwidth on Circuit Performance |
|
|
136 | (5) |
|
2.7.1 Frequency Dependence of the Open-Loop Gain |
|
|
136 | (3) |
|
2.7.2 Frequency Response of Closed-Loop Amplifiers |
|
|
139 | (2) |
|
2.8 Large-Signal Operation of Op Amps |
|
|
141 | (25) |
|
2.8.1 Output Voltage Saturation |
|
|
142 | (1) |
|
2.8.2 Output Current Limits |
|
|
142 | (1) |
|
|
143 | (4) |
|
|
147 | (1) |
|
|
148 | (18) |
|
|
166 | (66) |
|
|
167 | (1) |
|
|
167 | (8) |
|
3.1.1 Current---Voltage Characteristic |
|
|
167 | (2) |
|
|
169 | (3) |
|
3.1.3 Limiting and Protection Circuits |
|
|
172 | (3) |
|
3.2 Terminal Characteristics of Junction Diodes |
|
|
175 | (6) |
|
3.2.1 The Forward-Bias Region |
|
|
175 | (5) |
|
3.2.2 The Reverse-Bias Region |
|
|
180 | (1) |
|
3.2.3 The Breakdown Region |
|
|
180 | (1) |
|
|
181 | (6) |
|
3.3.1 The Exponential Model |
|
|
181 | (1) |
|
3.3.2 Graphical Analysis Using the Exponential Model |
|
|
181 | (1) |
|
3.3.3 Iterative Analysis Using the Exponential Model |
|
|
182 | (1) |
|
3.3.4 The Need for Rapid Analysis |
|
|
183 | (1) |
|
3.3.5 The Constant-Voltage-Drop Model |
|
|
183 | (1) |
|
3.3.6 The Ideal-Diode Model |
|
|
184 | (2) |
|
3.3.7 Operation in the Reverse Breakdown Region |
|
|
186 | (1) |
|
3.4 The Small-Signal Model |
|
|
187 | (5) |
|
|
192 | (5) |
|
|
197 | (14) |
|
3.6.1 The Half-Wave Rectifier |
|
|
198 | (2) |
|
3.6.2 The Full-Wave Rectifier |
|
|
200 | (1) |
|
3.6.3 The Bridge Rectifier |
|
|
201 | (2) |
|
3.6.4 The Rectifier with a Filter Capacitor---The Peak Rectifier |
|
|
203 | (7) |
|
3.6.5 Precision Half-Wave Rectifier---The Superdiode |
|
|
210 | (1) |
|
3.7 Other Diode Applications |
|
|
211 | (21) |
|
3.7.1 The Clamped Capacitor and Bootstrapping |
|
|
212 | (1) |
|
3.7.2 The Voltage Doubler |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
214 | (2) |
|
3.7.5 Light-Emitting Diodes (LEDs) |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
219 | (13) |
|
4 Bipolar Junction Transistors (BJTs) |
|
|
232 | (60) |
|
|
233 | (1) |
|
4.1 Device Structure and Physical Operation |
|
|
233 | (14) |
|
4.1.1 Simplified Structure and Modes of Operation |
|
|
233 | (2) |
|
4.1.2 Operation of the npn Transistor in the Active Mode |
|
|
235 | (8) |
|
4.1.3 Structure of Actual Transistors |
|
|
243 | (1) |
|
4.1.4 Operation in the Saturation Mode |
|
|
243 | (2) |
|
|
245 | (2) |
|
4.2 Current--Voltage Characteristics |
|
|
247 | (13) |
|
4.2.1 Circuit Symbols and Conventions |
|
|
247 | (5) |
|
4.2.2 Graphical Representation of Transistor Characteristics |
|
|
252 | (1) |
|
4.2.3 Dependence of ic on the Collector Voltage---The Early Effect |
|
|
253 | (3) |
|
4.2.4 An Alternative Form of the Common-Emitter Characteristics |
|
|
256 | (4) |
|
|
260 | (18) |
|
4.4 Transistor Breakdown and Temperature Effects |
|
|
278 | (14) |
|
4.4.1 Transistor Breakdown |
|
|
278 | (2) |
|
4.4.2 Dependence of β on Ic and Temperature |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (11) |
|
5 MOS Field-Effect Transistors (MOSFETs) |
|
|
292 | (58) |
|
|
293 | (1) |
|
5.1 Device Structure and Physical Operation |
|
|
294 | (15) |
|
|
294 | (2) |
|
5.1.2 Operation with Zero Gate Voltage |
|
|
296 | (1) |
|
5.1.3 Creating a Channel for Current Flow |
|
|
296 | (2) |
|
5.1.4 Applying a Small vDS |
|
|
298 | (3) |
|
5.1.5 Operation as vDS Is Increased |
|
|
301 | (1) |
|
5.1.6 Operation for uDS ≥ uov: Channel Pinch-Off and Current Saturation |
|
|
302 | (4) |
|
5.1.7 The p-Channel MOSFET |
|
|
306 | (2) |
|
5.1.8 Complementary MOS or CMOS |
|
|
308 | (1) |
|
5.2 Current--Voltage Characteristics |
|
|
309 | (11) |
|
|
309 | (1) |
|
5.2.2 The iD--uDS Characteristics |
|
|
310 | (1) |
|
5.2.3 The iD--uGS Characteristic |
|
|
311 | (4) |
|
5.2.4 Finite Output Resistance in Saturation |
|
|
315 | (3) |
|
5.2.5 Characteristics of the p-Channel MOSFET |
|
|
318 | (2) |
|
5.3 MOSFET Circuits at DC |
|
|
320 | (11) |
|
5.4 Technology Scaling (Moore's Law) and Other Topics |
|
|
331 | (19) |
|
|
331 | (3) |
|
5.4.2 Subthreshold Conduction and Leakage Currents |
|
|
334 | (1) |
|
5.4.3 The Role of the Substrate---The Body Effect |
|
|
335 | (1) |
|
5.4.4 Temperature Effects |
|
|
336 | (1) |
|
5.4.5 Breakdown and Input Protection |
|
|
336 | (1) |
|
5.4.6 The Depletion-Type MOSFET |
|
|
337 | (1) |
|
|
338 | (1) |
|
|
339 | (11) |
|
|
350 | (129) |
|
|
351 | (1) |
|
|
351 | (14) |
|
6.1.1 The Basis for Amplifier Operation |
|
|
351 | (1) |
|
6.1.2 Obtaining a Voltage Amplifier |
|
|
352 | (2) |
|
6.1.3 The Voltage-Transfer Characteristic (VTC) |
|
|
354 | (1) |
|
6.1.4 Obtaining Linear Amplification by Biasing the Transistor |
|
|
355 | (2) |
|
6.1.5 The Small-Signal Voltage Gain |
|
|
357 | (6) |
|
6.1.6 Determining the VTC by Graphical Analysis |
|
|
363 | (2) |
|
6.1.7 Deciding on a Location for the Bias Point Q |
|
|
365 | (1) |
|
6.2 Small-Signal Operation and Models |
|
|
365 | (37) |
|
|
366 | (15) |
|
|
381 | (20) |
|
|
401 | (1) |
|
|
402 | (30) |
|
6.3.1 The Three Basic Configurations |
|
|
402 | (1) |
|
6.3.2 Characterizing Amplifiers |
|
|
403 | (2) |
|
6.3.3 The Common-Source (CS) and Common-Emitter (CE) Amplifiers |
|
|
405 | (6) |
|
6.3.4 The Common-Source (Common-Emitter) Amplifier with a Source (Emitter) Resistance |
|
|
411 | (7) |
|
6.3.5 The Common-Gate (CG) and the Common-Base (CB) Amplifiers |
|
|
418 | (3) |
|
6.3.6 The Source and Emitter Followers |
|
|
421 | (10) |
|
6.3.7 Summary Tables and Comparisons |
|
|
431 | (1) |
|
6.3.8 When and How to Include the Output Resistance ro |
|
|
431 | (1) |
|
|
432 | (12) |
|
|
433 | (6) |
|
|
439 | (5) |
|
6.5 Discrete-Circuit Amplifiers |
|
|
444 | (35) |
|
6.5.1 A Common-Source (CS) Amplifier |
|
|
445 | (2) |
|
6.5.2 A Common-Emitter Amplifier |
|
|
447 | (2) |
|
6.5.3 A Common-Emitter Amplifier with an Emitter Resistance Re |
|
|
449 | (2) |
|
6.5.4 A Common-Base (CB) Amplifier |
|
|
451 | (1) |
|
6.5.5 An Emitter Follower |
|
|
452 | (2) |
|
6.5.6 The Amplifier Frequency Response |
|
|
454 | (1) |
|
|
455 | (1) |
|
|
456 | (23) |
|
PART II ANALOG INTEGRATED CIRCUITS |
|
|
479 | (597) |
|
7 Building Blocks of Integrated-Circuit Amplifiers |
|
|
481 | (72) |
|
|
482 | (1) |
|
|
482 | (2) |
|
7.2 IC Biasing: Current Sources and Current Mirrors |
|
|
484 | (14) |
|
7.2.1 The Basic MOSFET Current Source |
|
|
484 | (1) |
|
7.2.2 The MOS Current Mirror |
|
|
485 | (3) |
|
7.2.3 MOS Current-Steering Circuits |
|
|
488 | (2) |
|
|
490 | (5) |
|
7.2.5 Small-Signal Operation of Current Mirrors |
|
|
495 | (3) |
|
|
498 | (10) |
|
7.3.1 The CS and CE Amplifiers with Current-Source Loads |
|
|
498 | (1) |
|
|
499 | (3) |
|
7.3.3 Effect of the Output Resistance of the Current-Source Load |
|
|
502 | (4) |
|
7.3.4 Increasing the Gain of the Basic Cell |
|
|
506 | (2) |
|
7.4 The Common-Gate and Common-Base Amplifiers as Current Buffers |
|
|
508 | (10) |
|
|
508 | (4) |
|
7.4.2 Output Resistance of a CS Amplifier with a Source Resistance |
|
|
512 | (1) |
|
7.4.3 The Body Effect in the CG Amplifier |
|
|
513 | (1) |
|
|
514 | (3) |
|
7.4.5 Output Resistance of the Emitter-Degenerated CE Amplifier |
|
|
517 | (1) |
|
7.5 The Cascode Amplifier |
|
|
518 | (9) |
|
7.5.1 The MOS Cascode Amplifier |
|
|
518 | (5) |
|
7.5.2 Distribution of Voltage Gain in a Cascode Amplifier |
|
|
523 | (2) |
|
|
525 | (2) |
|
7.6 The IC Source Follower |
|
|
527 | (2) |
|
7.7 Current-Mirror Circuits with Improved Performance |
|
|
529 | (24) |
|
7.7.1 The Cascode MOS Mirror |
|
|
530 | (1) |
|
7.7.2 The Wilson BJT Current Mirror |
|
|
531 | (3) |
|
7.7.3 The Wilson MOS Mirror |
|
|
534 | (2) |
|
7.7.4 The Widlar Current Source |
|
|
536 | (2) |
|
|
538 | (1) |
|
|
539 | (14) |
|
8 Differential and Multistage Amplifiers |
|
|
553 | (96) |
|
|
554 | (1) |
|
8.1 The MOS Differential Pair |
|
|
554 | (19) |
|
8.1.1 Operation with a Common-Mode Input Voltage |
|
|
555 | (5) |
|
8.1.2 Operation with a Differential Input Voltage |
|
|
560 | (1) |
|
8.1.3 Large-Signal Operation |
|
|
561 | (4) |
|
8.1.4 Small-Signal Operation |
|
|
565 | (5) |
|
8.1.5 The Differential Amplifier with Current-Source Loads |
|
|
570 | (1) |
|
8.1.6 Cascode Differential Amplifier |
|
|
571 | (2) |
|
8.2 The BJT Differential Pair |
|
|
573 | (13) |
|
|
573 | (2) |
|
8.2.2 Input Common-Mode Range |
|
|
575 | (1) |
|
8.2.3 Large-Signal Operation |
|
|
576 | (3) |
|
8.2.4 Small-Signal Operation |
|
|
579 | (7) |
|
8.3 Common-Mode Rejection |
|
|
586 | (9) |
|
|
586 | (6) |
|
|
592 | (3) |
|
|
595 | (7) |
|
8.4.1 Input Offset Voltage of the MOS Differential Amplifier |
|
|
595 | (4) |
|
8.4.2 Input Offset Voltage of the Bipolar Differential Amplifier |
|
|
599 | (2) |
|
8.4.3 Input Bias and Offset Currents of the Bipolar Differential Amplifier |
|
|
601 | (1) |
|
8.4.4 A Concluding Remark |
|
|
602 | (1) |
|
8.5 The Differential Amplifier with a Current-Mirror Load |
|
|
602 | (13) |
|
8.5.1 Differential-to-Single-Ended Conversion |
|
|
603 | (1) |
|
8.5.2 The Current-Mirror-Loaded MOS Differential Pair |
|
|
603 | (3) |
|
8.5.3 Differential Gain of the Current-Mirror-Loaded MOS Pair |
|
|
606 | (4) |
|
8.5.4 The Bipolar Differential Pair with a Current-Mirror Load |
|
|
610 | (2) |
|
8.5.5 Common-Mode Gain and CMRR |
|
|
612 | (3) |
|
8.6 Multistage Amplifiers |
|
|
615 | (34) |
|
8.6.1 A Two-Stage CMOS Op Amp |
|
|
616 | (4) |
|
|
620 | (9) |
|
|
629 | (1) |
|
|
630 | (19) |
|
|
649 | (106) |
|
|
650 | (1) |
|
9.1 High-Frequency Transistor Models |
|
|
651 | (10) |
|
|
652 | (4) |
|
|
656 | (5) |
|
9.2 High-Frequency Response of CS and CE Amplifiers |
|
|
661 | (18) |
|
9.2.1 Frequency Response of the Low-Pass Single-Time-Constant Circuit |
|
|
661 | (1) |
|
9.2.2 The Common-Source Amplifier |
|
|
662 | (5) |
|
9.2.3 Frequency Response of the CS Amplifier When Rsig Is Low |
|
|
667 | (4) |
|
9.2.4 The Common-Emitter Amplifier |
|
|
671 | (4) |
|
|
675 | (4) |
|
9.3 The Method of Open-Circuit Time Constants |
|
|
679 | (7) |
|
9.3.1 The High-Frequency Gain Function |
|
|
679 | (1) |
|
9.3.2 Determining the 3-dB Frequency fH |
|
|
680 | (1) |
|
9.3.3 Applying the Method of Open-Circuit Time Constants to the CS Amplifier |
|
|
681 | (4) |
|
9.3.4 Application of the Method of Open-Circuit Time Constants to the CE Amplifier |
|
|
685 | (1) |
|
9.4 High-Frequency Response of Common-Gate and Cascode Amplifiers |
|
|
686 | (12) |
|
9.4.1 High-Frequency Response of the CG Amplifier |
|
|
686 | (6) |
|
9.4.2 High-Frequency Response of the MOS Cascode Amplifier |
|
|
692 | (5) |
|
9.4.3 High-Frequency Response of the Bipolar Cascode Amplifier |
|
|
697 | (1) |
|
9.5 High-Frequency Response of Source and Emitter Followers |
|
|
698 | (8) |
|
9.5.1 The Source-Follower Case |
|
|
699 | (6) |
|
9.5.2 The Emitter-Follower Case |
|
|
705 | (1) |
|
9.6 High-Frequency Response of Differential Amplifiers |
|
|
706 | (10) |
|
9.6.1 Analysis of the Resistively Loaded MOS Amplifier |
|
|
706 | (5) |
|
9.6.2 Frequency Response of the Current-Mirror-Loaded MOS Differential Amplifier |
|
|
711 | (5) |
|
9.7 Other Wideband Amplifier Configurations |
|
|
716 | (10) |
|
9.7.1 Obtaining Wideband Amplification by Source or Emitter Degeneration |
|
|
716 | (3) |
|
9.7.2 Increasing fH by Buffering the Input Signal Source |
|
|
719 | (4) |
|
9.7.3 Increasing fH by Eliminating the Miller Effect Using a CG or a CB Configuration with an Input Buffer |
|
|
723 | (3) |
|
9.8 Low-Frequency Response of Discrete-Circuit CS and CE Amplifiers |
|
|
726 | (29) |
|
9.8.1 Frequency Response of the High-Pass Single-Time-Constant Circuit |
|
|
726 | (1) |
|
|
727 | (7) |
|
9.8.3 The Method of Short-Circuit Time Constants |
|
|
734 | (1) |
|
|
735 | (4) |
|
|
739 | (1) |
|
|
740 | (15) |
|
|
755 | (102) |
|
|
756 | (1) |
|
10.1 The General Feedback Structure |
|
|
757 | (7) |
|
10.1.1 Signal-Flow Diagram |
|
|
757 | (1) |
|
10.1.2 The Closed-Loop Gain |
|
|
758 | (1) |
|
|
759 | (1) |
|
10.1.4 The Ideal Case of Infinite Open-Loop Gain A |
|
|
760 | (4) |
|
|
764 | (1) |
|
10.2 Some Properties of Negative Feedback |
|
|
764 | (4) |
|
10.2.1 Gain Desensitivity |
|
|
764 | (1) |
|
10.2.2 Bandwidth Extension |
|
|
765 | (1) |
|
10.2.3 Reduction in Nonlinear Distortion |
|
|
766 | (2) |
|
10.3 The Feedback Voltage Amplifier |
|
|
768 | (10) |
|
10.3.1 The Series--Shunt Feedback Topology |
|
|
768 | (1) |
|
10.3.2 Examples of Series--Shunt Feedback Amplifiers |
|
|
769 | (2) |
|
10.3.3 Analysis of the Feedback Voltage Amplifier |
|
|
771 | (6) |
|
|
777 | (1) |
|
10.4 Systematic Analysis of Feedback Voltage Amplifiers |
|
|
778 | (11) |
|
|
778 | (2) |
|
10.4.2 The Practical Case |
|
|
780 | (9) |
|
10.5 Other Feedback-Amplifier Types |
|
|
789 | (25) |
|
|
789 | (3) |
|
10.5.2 The Feedback Transconductance Amplifier (Series--Series) |
|
|
792 | (10) |
|
10.5.3 The Feedback Transresistance Amplifier (Shunt--Shunt) |
|
|
802 | (7) |
|
10.5.4 The Feedback Current Amplifier (Shunt--Series) |
|
|
809 | (5) |
|
10.6 Summary of the Feedback-Analysis Method |
|
|
814 | (1) |
|
10.7 The Stability Problem |
|
|
814 | (3) |
|
10.8 Effect of Feedback on the Amplifier Poles |
|
|
817 | (7) |
|
10.8.1 Stability and Pole Location |
|
|
817 | (1) |
|
10.8.2 Poles of the Feedback Amplifier |
|
|
817 | (1) |
|
10.8.3 Amplifiers with a Single-Pole Response |
|
|
818 | (2) |
|
10.8.4 Amplifiers with a Two-Pole Response |
|
|
820 | (2) |
|
10.8.5 Amplifiers with Three or More Poles |
|
|
822 | (2) |
|
10.9 Stability Study Using Bode Plots |
|
|
824 | (5) |
|
10.9.1 Gain and Phase Margins |
|
|
824 | (1) |
|
10.9.2 Effect of Phase Margin on Closed-Loop Response |
|
|
825 | (1) |
|
10.9.3 An Alternative Approach for Investigating Stability |
|
|
826 | (3) |
|
10.10 Frequency Compensation |
|
|
829 | (28) |
|
|
829 | (1) |
|
|
830 | (1) |
|
10.10.3 Miller Compensation and Pole Splitting |
|
|
831 | (4) |
|
|
835 | (1) |
|
|
836 | (21) |
|
11 Output Stages and Power Amplifiers |
|
|
857 | (49) |
|
|
858 | (1) |
|
11.1 Classification of Output Stages |
|
|
858 | (2) |
|
11.2 Class A Output Stage |
|
|
860 | (7) |
|
11.2.1 Transfer Characteristic |
|
|
860 | (3) |
|
|
863 | (1) |
|
|
864 | (2) |
|
11.2.4 Power-Conversion Efficiency |
|
|
866 | (1) |
|
11.3 Class B Output Stage |
|
|
867 | (5) |
|
|
867 | (1) |
|
11.3.2 Transfer Characteristic |
|
|
867 | (1) |
|
11.3.3 Power-Conversion Efficiency |
|
|
868 | (1) |
|
|
869 | (3) |
|
11.4 Class AB Output Stage |
|
|
872 | (5) |
|
|
872 | (2) |
|
|
874 | (3) |
|
11.5 Biasing the Class AB Circuit |
|
|
877 | (8) |
|
11.5.1 Biasing Using Diodes |
|
|
877 | (2) |
|
11.5.2 Biasing Using the VBE Multiplier |
|
|
879 | (3) |
|
11.5.3 Use of Input Emitter Followers |
|
|
882 | (1) |
|
11.5.4 Use of Compound Devices |
|
|
883 | (2) |
|
|
885 | (9) |
|
11.6.1 The Source Follower |
|
|
886 | (1) |
|
11.6.2 An Alternative Using a Common-Source Transistor |
|
|
887 | (4) |
|
11.6.3 Class D Power Amplifiers |
|
|
891 | (3) |
|
|
894 | (12) |
|
11.7.1 Packages and Heat Sinks |
|
|
894 | (1) |
|
|
894 | (1) |
|
|
895 | (2) |
|
|
897 | (1) |
|
|
898 | (8) |
|
12 Operational-Amplifier Circuits |
|
|
906 | (68) |
|
|
907 | (1) |
|
12.1 The Two-Stage CMOS Op Amp |
|
|
908 | (17) |
|
|
908 | (1) |
|
12.1.2 Input Common-Mode Range and Output Swing |
|
|
909 | (1) |
|
|
910 | (2) |
|
12.1.4 Common-Mode Rejection Ratio (CMRR) |
|
|
912 | (1) |
|
12.1.5 Frequency Response |
|
|
913 | (5) |
|
|
918 | (1) |
|
12.1.7 Power-Supply Rejection Ratio (PSRR) |
|
|
919 | (1) |
|
|
920 | (5) |
|
12.2 The Folded-Cascode CMOS OpAmp |
|
|
925 | (12) |
|
|
926 | (1) |
|
12.2.2 Input Common-Mode Range and Output Swing |
|
|
927 | (2) |
|
|
929 | (2) |
|
12.2.4 Frequency Response |
|
|
931 | (1) |
|
|
932 | (2) |
|
12.2.6 Increasing the Input Common-Mode Range: Rail-to-Rail Input Operation |
|
|
934 | (1) |
|
12.2.7 Increasing the Output Voltage Range: The Wide-Swing Current Mirror |
|
|
935 | (2) |
|
12.3 BJT Op-Amp Techniques |
|
|
937 | (37) |
|
|
938 | (1) |
|
12.3.2 Design of the Input Stage |
|
|
939 | (7) |
|
12.3.3 Common-Mode Feedback to Control the DC Voltage at the Output of the Input Stage |
|
|
946 | (4) |
|
12.3.4 The 741 Op Amp Input Stage |
|
|
950 | (9) |
|
12.3.5 Output-Stage Design for Near Rail-to-Rail Output Swing |
|
|
959 | (5) |
|
|
964 | (1) |
|
|
964 | (10) |
|
13 Filters and Oscillators |
|
|
974 | (102) |
|
|
975 | (1) |
|
13.1 Basic Filter Concepts |
|
|
976 | (5) |
|
13.1.1 Filter Transmission |
|
|
976 | (1) |
|
|
976 | (1) |
|
13.1.3 Filter Specification |
|
|
977 | (2) |
|
13.1.4 Obtaining the Filter Transfer Function: Filter Approximation |
|
|
979 | (1) |
|
13.1.5 Obtaining the Filter Circuit: Filter Realization |
|
|
980 | (1) |
|
13.2 The Filter Transfer Function |
|
|
981 | (10) |
|
|
981 | (1) |
|
|
981 | (1) |
|
13.2.3 The Filter Transmission Zeros |
|
|
982 | (2) |
|
|
984 | (1) |
|
13.2.5 Factoring T(s) into the Product of First-Order and Second-Order Functions |
|
|
985 | (1) |
|
13.2.6 First-Order Filters |
|
|
986 | (2) |
|
13.2.7 Second-Order Filter Functions |
|
|
988 | (3) |
|
13.3 Butterworth and Chebyshev Filters |
|
|
991 | (9) |
|
13.3.1 The Butterworth Filter |
|
|
991 | (6) |
|
13.3.2 The Chebyshev Filter |
|
|
997 | (3) |
|
13.4 Second-Order Passive Filters Based on the LCR Resonator |
|
|
1000 | (4) |
|
13.4.1 The Resonator Poles |
|
|
1000 | (1) |
|
13.4.2 Realization of Transmission Zeros |
|
|
1001 | (1) |
|
13.4.3 Realization of the Low-Pass Function |
|
|
1002 | (1) |
|
13.4.4 Realization of the Bandpass Function |
|
|
1002 | (1) |
|
13.4.5 Realization of the Notch Functions |
|
|
1002 | (2) |
|
13.5 Second-Order Active Filters Based on Inductance Simulation |
|
|
1004 | (7) |
|
13.5.1 The Antoniou Inductance-Simulation Circuit |
|
|
1005 | (1) |
|
13.5.2 The Op Amp-RC Resonator |
|
|
1005 | (2) |
|
13.5.3 Realization of the Various Filter Types |
|
|
1007 | (4) |
|
13.6 Second-Order Active Filters Based on the Two-Integrator Loop |
|
|
1011 | (7) |
|
13.6.1 Derivation of the Two-Integrator-Loop Biquad |
|
|
1011 | (2) |
|
13.6.2 Circuit Implementation |
|
|
1013 | (1) |
|
13.6.3 An Alternative Two-Integrator-Loop Biquad Circuit |
|
|
1014 | (2) |
|
|
1016 | (2) |
|
13.7 Second Order Active Filters Using a Single Op Amp |
|
|
1018 | (5) |
|
|
1018 | (2) |
|
|
1020 | (1) |
|
|
1021 | (2) |
|
13.8 Switched-Capacitor Filters |
|
|
1023 | (5) |
|
13.8.1 The Basic Principle |
|
|
1023 | (1) |
|
13.8.2 Switched-Capacitor Integrator |
|
|
1024 | (1) |
|
13.8.3 Switched-Capacitor Biquad Filter |
|
|
1025 | (3) |
|
|
1028 | (1) |
|
13.9 Basic Principles of Sinusoidal Oscillators |
|
|
1028 | (8) |
|
13.9.1 The Oscillator Feedback Loop |
|
|
1028 | (1) |
|
13.9.2 The Oscillation Criterion |
|
|
1029 | (1) |
|
13.9.3 Analysis of Oscillator Circuits |
|
|
1030 | (4) |
|
13.9.4 Nonlinear Amplitude Control |
|
|
1034 | (2) |
|
13.10 Op Amp-RC Oscillator Circuits |
|
|
1036 | (8) |
|
13.10.1 The Wien-Bridge Oscillator |
|
|
1036 | (3) |
|
13.10.2 The Phase-Shift Oscillator |
|
|
1039 | (2) |
|
13.10.3 The Quadrature Oscillator |
|
|
1041 | (1) |
|
13.10.4 The Active-Filter-Tuned Oscillator |
|
|
1042 | (2) |
|
|
1044 | (1) |
|
13.11 LC and Crystal Oscillators |
|
|
1044 | (8) |
|
13.11.1 The Colpitts and Hartely Oscillators |
|
|
1044 | (4) |
|
13.11.2 The Cross-Coupled LC Oscillator |
|
|
1048 | (2) |
|
13.11.3 Crystal Oscillators |
|
|
1050 | (2) |
|
13.12 Nonlinear Oscillators or Function Generators |
|
|
1052 | (24) |
|
13.12.1 The Bistable Feedback Loop |
|
|
1052 | (2) |
|
13.12.2 Transfer Characteristic of the Bistable Circuit |
|
|
1054 | (1) |
|
13.12.3 Triggering the Bistable Circuit |
|
|
1055 | (1) |
|
13.12.4 The Bistable Circuit as a Memory Element |
|
|
1055 | (1) |
|
13.12.5 A Bistable Circuit with Noninverting Transfer Characteristic |
|
|
1056 | (1) |
|
13.12.6 Generating Square Waveforms Using a Bistable Circuit |
|
|
1057 | (3) |
|
13.12.7 Generating Triangular Waveforms |
|
|
1060 | (2) |
|
13.12.8 Generation of Sine Waves |
|
|
1062 | (1) |
|
|
1062 | (1) |
|
|
1063 | (13) |
|
PART III DIGITAL INTEGRATED CIRCUITS |
|
|
1076 | |
|
14 CMOS Digital Logic Circuits |
|
|
1078 | (39) |
|
|
1079 | (1) |
|
14.1 CMOS Logic-Gate Circuits |
|
|
1079 | (10) |
|
14.1.1 Switch-Level Transistor Model |
|
|
1079 | (1) |
|
|
1079 | (1) |
|
14.1.3 General Structure of CMOS Logic |
|
|
1080 | (4) |
|
14.1.4 The Two-Input NOR Gate |
|
|
1084 | (1) |
|
14.1.5 The Two-Input NAND Gate |
|
|
1084 | (1) |
|
|
1085 | (1) |
|
14.1.7 Obtaining the PUN from the PDN and Vice Versa |
|
|
1085 | (1) |
|
14.1.8 The Exclusive-OR Function |
|
|
1086 | (1) |
|
14.1.9 Surnmaryofthe Synthesis Method |
|
|
1087 | (2) |
|
14.2 Digital Logic Inverters |
|
|
1089 | (12) |
|
14.2.1 The Voltage-Transfer Characteristic (VTC) |
|
|
1089 | (1) |
|
|
1090 | (2) |
|
|
1092 | (1) |
|
14.2.4 Inverter Implementation |
|
|
1093 | (8) |
|
|
1101 | (16) |
|
|
1102 | (2) |
|
14.3.2 The Voltage-Transfer Characteristic (VTC) |
|
|
1104 | (3) |
|
14.3.3 The Situation When QN and QP Are Not Matched |
|
|
1107 | (5) |
|
|
1112 | (1) |
|
|
1113 | (4) |
|
15 Digital Design: Power, Speed, and Area |
|
|
1117 | (42) |
|
|
1118 | (1) |
|
15.1 Dynamic Operation of the CMOS Inverter |
|
|
1118 | (14) |
|
|
1118 | (4) |
|
15.1.2 Determining the Propagation Delay of the CMOS Inverter |
|
|
1122 | (7) |
|
15.1.3 Determining the Equivalent Load Capacitance C |
|
|
1129 | (3) |
|
|
1132 | (10) |
|
|
1133 | (2) |
|
15.2.2 Transistor Sizing in CMOS Logic Gates |
|
|
1135 | (3) |
|
15.2.3 Effects of Fan-In and Fan-Out on Propagation Delay |
|
|
1138 | (1) |
|
15.2.4 Driving a Large Capacitance |
|
|
1139 | (3) |
|
|
1142 | (5) |
|
15.3.1 Sources of Power Dissipation |
|
|
1142 | (4) |
|
15.3.2 Power-Delay and Energy-Delay Products |
|
|
1146 | (1) |
|
15.4 Implications of Technology Scaling: Issues in Deep-Submicron Design |
|
|
1147 | (12) |
|
|
1147 | (1) |
|
15.4.2 Scaling Implications |
|
|
1147 | (2) |
|
15.4.3 Temperature, Voltage, and Process Variations |
|
|
1149 | (1) |
|
15.4.4 Wiring: The Interconnect |
|
|
1149 | (1) |
|
15.4.5 Digital Design in Modern Technologies |
|
|
1150 | (1) |
|
|
1151 | (2) |
|
|
1153 | (6) |
|
16 Memory and Clocking Circuits |
|
|
1159 | |
|
|
1160 | (1) |
|
16.1 The Transmission Gate |
|
|
1160 | (12) |
|
16.1.1 Operation with NMOS Transistors as Switches |
|
|
1161 | (4) |
|
16.1.2 Restoring the Value of VOH to VDD |
|
|
1165 | (1) |
|
16.1.3 The Use of CMOS Transmission Gates as Switches |
|
|
1166 | (6) |
|
16.2 Latches and Flip-Flops |
|
|
1172 | (11) |
|
|
1172 | (2) |
|
|
1174 | (1) |
|
16.2.3 CMOS Implementation of SR Flip-Flops |
|
|
1175 | (5) |
|
16.2.4 A Simpler CMOS Implementation of the Clocked SR Flip-Flop |
|
|
1180 | (1) |
|
16.2.5 D Flip-Flop Circuits |
|
|
1180 | (3) |
|
16.3 Random-Access Memory (RAM) Cells |
|
|
1183 | (13) |
|
16.3.1 Static Memory (SRAM) Cell |
|
|
1185 | (7) |
|
16.3.2 Dynamic Memory (DRAM) Cell |
|
|
1192 | (2) |
|
|
1194 | (2) |
|
16.4 Ring Oscillators and Special-Purpose Circuits |
|
|
1196 | |
|
16.4.1 Ring Oscillators and Other Pulse-Generation Circuits |
|
|
1196 | (2) |
|
16.4.2 The Sense Amplifier |
|
|
1198 | (5) |
|
16.4.3 The Row-Address Decoder |
|
|
1203 | (2) |
|
16.4.4 The Column-Address Decoder |
|
|
1205 | (1) |
|
|
1206 | (1) |
|
|
1207 | |
|
|
|
A VLSI Fabrication Technology* |
|
|
1 | (1) |
|
B SPICE Device Models and Design with Simulation Examples* |
|
|
1 | (1) |
|
C Two-Port Network Parameters* |
|
|
1 | (1) |
|
D Some Useful Network Theorems* |
|
|
1 | (1) |
|
E Single-Time-Constant Circuits* |
|
|
1 | (1) |
|
F s-Domain Analysis: Poles, Zeros, and Bode Plots* |
|
|
1 | (1) |
|
G Comparison of the MOSFET and the BJT* |
|
|
1 | (1) |
|
H Filter Design Material* |
|
|
1 | (1) |
|
|
1 | (1) |
|
J Standard Resistance Values and Unit Prefixes |
|
|
1 | (1) |
|
K Typical Parameter Values for IC Devices Fabricated in CMOS and Bipolar Processes |
|
|
1 | (1) |
|
L Answers to Selected Problems* |
|
|
1 | (1) |
Summary Tables* |
|
Index |
|
1 | |