Foreword |
|
v | |
|
Preface |
|
vii | |
|
Basic Concepts and Technologies |
|
|
1 | (50) |
|
New Flow Regimes in Microsystems |
|
|
1 | (7) |
|
|
8 | (16) |
|
|
13 | (5) |
|
|
18 | (1) |
|
|
19 | (5) |
|
|
24 | (6) |
|
|
30 | (4) |
|
|
34 | (3) |
|
Numerical Simulation at All Scales |
|
|
37 | (1) |
|
Full-System Simulation of Microsystems |
|
|
38 | (13) |
|
|
40 | (1) |
|
Coupled Circuit/Device Modeling |
|
|
41 | (10) |
|
Governing Equations and Slip Models |
|
|
51 | (28) |
|
The Basic Equations of Fluid Dynamics |
|
|
51 | (6) |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
57 | (9) |
|
|
59 | (2) |
|
The Role of the Accommodation Coefficients |
|
|
61 | (5) |
|
|
66 | (13) |
|
Derivation of High-Order Slip Models |
|
|
67 | (3) |
|
|
70 | (4) |
|
Comparison of Slip Models |
|
|
74 | (5) |
|
|
79 | (38) |
|
Couette Flow: Slip Flow Regime |
|
|
79 | (4) |
|
Couette Flow: Transition and Free-Molecular Flow Regimes |
|
|
83 | (7) |
|
|
83 | (3) |
|
|
86 | (4) |
|
|
90 | (20) |
|
|
91 | (5) |
|
|
96 | (13) |
|
|
109 | (1) |
|
|
110 | (2) |
|
|
112 | (5) |
|
|
117 | (50) |
|
|
117 | (23) |
|
Isothermal Compressible Flows |
|
|
118 | (8) |
|
Adiabatic Compressible Flows -- Fanno Theory |
|
|
126 | (5) |
|
Validation of Slip Models with DSMC |
|
|
131 | (5) |
|
|
136 | (1) |
|
|
137 | (3) |
|
Transition and Free-Molecular Regimes |
|
|
140 | (27) |
|
|
144 | (2) |
|
|
146 | (20) |
|
|
166 | (1) |
|
Thermal Effects in Microscales |
|
|
167 | (28) |
|
Thermal Creep (Transpiration) |
|
|
167 | (8) |
|
|
169 | (4) |
|
A Thermal Creep Experiment |
|
|
173 | (1) |
|
|
174 | (1) |
|
Other Temperature-Induced Flows |
|
|
175 | (2) |
|
Heat Conduction and the Ghost Effect |
|
|
177 | (2) |
|
Heat Transfer in Poiseuille Microflows |
|
|
179 | (9) |
|
|
179 | (7) |
|
|
186 | (2) |
|
Heat Transfer in Couette Microflows |
|
|
188 | (7) |
|
Prototype Applications of Gas Flows |
|
|
195 | (60) |
|
Gas Damping and Dynamic Response of Microsystems |
|
|
196 | (18) |
|
|
199 | (11) |
|
Squeezed Film Effects in Accelerometers |
|
|
210 | (4) |
|
|
214 | (7) |
|
|
221 | (3) |
|
Flow Past a Sphere: Stokes Flow Regime |
|
|
224 | (3) |
|
|
224 | (1) |
|
|
225 | (2) |
|
|
227 | (12) |
|
Drag Force Characteristics |
|
|
232 | (2) |
|
Viscous Heating Characteristics |
|
|
234 | (1) |
|
Short Channels and Filters |
|
|
234 | (5) |
|
|
239 | (1) |
|
Micropropulsion and Micronozzle Flows |
|
|
239 | (16) |
|
|
240 | (5) |
|
Rarefaction and Other Effects |
|
|
245 | (10) |
|
|
255 | (56) |
|
|
256 | (2) |
|
The Electric Double Layer (EDL) |
|
|
258 | (5) |
|
Near-Wall Potential Distribution |
|
|
261 | (2) |
|
|
263 | (3) |
|
|
266 | (26) |
|
|
266 | (6) |
|
Time-Periodic and AC Flows |
|
|
272 | (7) |
|
EDL/Bulk Flow Interface Velocity Matching Condition |
|
|
279 | (1) |
|
|
280 | (1) |
|
A Model for Wall Drag Force |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
283 | (9) |
|
|
292 | (10) |
|
|
294 | (1) |
|
|
295 | (2) |
|
|
297 | (5) |
|
Charged Particle in a Pipe |
|
|
302 | (1) |
|
|
302 | (9) |
|
|
304 | (7) |
|
Surface Tension-Driven Flows |
|
|
311 | (32) |
|
|
312 | (5) |
|
General Form of Young's Equation |
|
|
317 | (2) |
|
Governing Equations for Thin Films |
|
|
319 | (2) |
|
Dynamics of Capillary Spreading |
|
|
321 | (3) |
|
|
324 | (4) |
|
|
328 | (9) |
|
Generalized Young-Lippmann Equation |
|
|
333 | (2) |
|
|
335 | (2) |
|
Bubble Transport in Capillaries |
|
|
337 | (6) |
|
Mixers and Chaotic Advection |
|
|
343 | (22) |
|
The Need for Mixing at Microscales |
|
|
344 | (2) |
|
|
346 | (3) |
|
|
349 | (8) |
|
Quantitative Characterization of Mixing |
|
|
357 | (8) |
|
Simple Fluids in Nanochannels |
|
|
365 | (42) |
|
Atomistic Simulation of Simple Fluids |
|
|
366 | (2) |
|
|
368 | (7) |
|
|
375 | (6) |
|
Validity of the Navier--Stokes Equations |
|
|
381 | (6) |
|
Boundary Conditions at Solid--Liquid Interfaces |
|
|
387 | (20) |
|
Experimental and Computational Results |
|
|
387 | (9) |
|
Conceptual Models of Slip |
|
|
396 | (5) |
|
Reynolds--Vinogradova Theory for Hydrophobic Surfaces |
|
|
401 | (6) |
|
|
407 | (40) |
|
|
407 | (9) |
|
|
409 | (7) |
|
|
416 | (14) |
|
Density Distribution and Dipole Orientation |
|
|
417 | (5) |
|
|
422 | (5) |
|
|
427 | (2) |
|
|
429 | (1) |
|
|
430 | (17) |
|
|
430 | (5) |
|
|
435 | (2) |
|
Filling and Emptying Kinetics |
|
|
437 | (10) |
|
Electroosmotic Flow in Nanochannels |
|
|
447 | (24) |
|
The Need for Atomistic Simulation |
|
|
447 | (5) |
|
|
452 | (5) |
|
Modified Poisson--Boltzmann Equation |
|
|
455 | (2) |
|
|
457 | (4) |
|
|
461 | (3) |
|
Charge Inversion and Flow Reversal |
|
|
464 | (7) |
|
Functional Fluids and Functionalized Nanotubes |
|
|
471 | (38) |
|
Colloidal Particles and Self-Assembly |
|
|
472 | (18) |
|
Magnetorheological (MR) Fluids |
|
|
475 | (11) |
|
Electrophoretic Deposition |
|
|
486 | (4) |
|
Electrolyte Transport Through Carbon Nanotubes |
|
|
490 | (19) |
|
|
491 | (2) |
|
Ion Channels in Biological Membranes |
|
|
493 | (2) |
|
Transport Through Unmodified Nanotubes |
|
|
495 | (2) |
|
Transport Through Nanotubes with Charges at the Ends |
|
|
497 | (1) |
|
Transport Through Functionalized Nanotubes |
|
|
498 | (1) |
|
|
499 | (10) |
|
Numerical Methods for Continuum Simulation |
|
|
509 | (50) |
|
Spectral Element Method: The μFlow Program |
|
|
510 | (21) |
|
|
514 | (3) |
|
|
517 | (7) |
|
Verification Example: Resolution of the Electric Double Layer |
|
|
524 | (1) |
|
|
525 | (6) |
|
|
531 | (11) |
|
|
532 | (5) |
|
|
537 | (5) |
|
|
542 | (17) |
|
Hydrodynamic Forces on Spheres |
|
|
543 | (4) |
|
The Force Coupling Method (FCM) |
|
|
547 | (12) |
|
Multiscale Modeling of Gas Flows |
|
|
559 | (66) |
|
Direct Simulation Monte Carlo (DSMC) Method |
|
|
560 | (12) |
|
Limitations and Errors in DSMC |
|
|
562 | (5) |
|
|
567 | (2) |
|
DSMC: Information-Preservation Method |
|
|
569 | (3) |
|
|
572 | (6) |
|
|
575 | (2) |
|
Interpolation Between Domains |
|
|
577 | (1) |
|
Multiscale Analysis of Microfilters |
|
|
578 | (10) |
|
|
579 | (5) |
|
Navier--Stokes/DSMC Coupling |
|
|
584 | (4) |
|
|
588 | (23) |
|
|
592 | (4) |
|
|
596 | (10) |
|
|
606 | (5) |
|
|
611 | (1) |
|
Lattice--Boltzmann Method (LBM) |
|
|
611 | (14) |
|
|
618 | (1) |
|
Comparison with Navier--Stokes Solutions |
|
|
618 | (2) |
|
LBM Simulation of Microflows |
|
|
620 | (5) |
|
Multiscale Modeling of Liquid Flows |
|
|
625 | (52) |
|
Molecular Dynamics (MD) Method |
|
|
626 | (22) |
|
Intermolecular Potentials |
|
|
628 | (6) |
|
Calculation of the Potential Function |
|
|
634 | (4) |
|
|
638 | (2) |
|
|
640 | (6) |
|
|
646 | (2) |
|
|
648 | (1) |
|
|
648 | (8) |
|
Embedding Multiscale Methods |
|
|
656 | (7) |
|
Application to the Poisson-Boltzmann Equation |
|
|
657 | (2) |
|
Application to Navier--Stokes Equations |
|
|
659 | (4) |
|
Dissipative Particle Dynamics (DPD) |
|
|
663 | (14) |
|
|
665 | (3) |
|
|
668 | (5) |
|
|
673 | (4) |
|
|
677 | (44) |
|
|
677 | (3) |
|
Quasi-Static Reduced-Order Modeling |
|
|
678 | (1) |
|
Dynamical Reduced-Order Modeling |
|
|
679 | (1) |
|
Generalized Kirchhoffian Networks |
|
|
680 | (15) |
|
Equivalent Circuit Representation |
|
|
681 | (8) |
|
|
689 | (6) |
|
|
695 | (10) |
|
|
695 | (2) |
|
|
697 | (4) |
|
|
701 | (4) |
|
|
705 | (16) |
|
|
705 | (12) |
|
Nonlinear Galerkin Methods |
|
|
717 | (4) |
|
|
721 | (36) |
|
Circuit and Device Models for Lab-on-a-Chip Systems |
|
|
721 | (24) |
|
|
723 | (2) |
|
|
725 | (5) |
|
Chemical Reactions: Device Models |
|
|
730 | (1) |
|
|
731 | (2) |
|
Integration of the Models |
|
|
733 | (1) |
|
|
733 | (12) |
|
Macromodeling of Squeezed Film Damping |
|
|
745 | (8) |
|
Equivalent Circuit Models |
|
|
747 | (2) |
|
|
749 | (2) |
|
|
751 | (1) |
|
|
752 | (1) |
|
Compact Model for Electrowetting |
|
|
753 | (1) |
|
|
754 | (3) |
Bibliography |
|
757 | (51) |
Index |
|
808 | |