Muutke küpsiste eelistusi

E-raamat: Microstrip Patch Antennas (Second Edition)

(The Univ Of Mississippi, Usa), (City Univ Of Hong Kong, Hong Kong), (City Univ Of Hong Kong, Hong Kong)
  • Formaat: 688 pages
  • Ilmumisaeg: 10-Jul-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813208612
  • Formaat - PDF+DRM
  • Hind: 53,82 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 688 pages
  • Ilmumisaeg: 10-Jul-2017
  • Kirjastus: World Scientific Publishing Co Pte Ltd
  • Keel: eng
  • ISBN-13: 9789813208612

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Microstrip patch antennas have become the favorite of antenna designers because of their versatility and having the advantages of planar profile, ease of fabrication, compatibility with integrated circuit technology, and conformability with a shaped surface. There is a need for graduate students and practicing engineers to gain an in depth understanding of this subject. The first edition of this book, published in 2011, was written with this purpose in mind. This second edition contains approximately one third new materials. The authors, Prof KF Lee, Prof KM Luk and Dr HW Lai, have all made significant contributions in the field. Prof Lee and Prof Luk are IEEE Fellows. Prof Lee was the recipient of the 2009 John Kraus Antenna Award of the IEEE Antennas and Propagation Society while Prof. Luk receives the same award in 2017, both in recognition of their contributions to wideband microstrip antennas.
Preface to First Edition v
Preface to Second Edition vii
Acknowledgments ix
Chapter 1 Introduction 1(24)
1.1 Introductory Remarks
1(1)
1.2 Conventional Antennas
1(7)
1.3 Geometries of the Basic Microstrip Patch Antenna
8(1)
1.4 Advantages and Disadvantages of Microstrip Patch Antennas
9(4)
1.4.1 Advantages
9(3)
1.4.2 Disadvantages of Microstrip Patch Antenna
12(1)
1.5 Material Consideration
13(1)
1.6 Feed Methods for the Single Element
14(5)
1.6.1 Coaxial Probe Feed
14(1)
1.6.2 Microstrip-Line Feed
14(2)
1.6.3 Proximity-Coupled Microstrip-Line Feed
16(1)
1.6.4 Aperture-Coupled Feed
17(1)
1.6.5 Summary of Advantages and Disadvantages of Feeding Methods
18(1)
1.7 General Comments on Designing Microstrip Patch Antennas
19(3)
1.8 Utilization of The Electromagnetic Spectrum for Wireless Communication Applications
22(1)
References
22(3)
Chapter 2 Review of Some Background Materials 25(16)
2.1 Boundary Value Problems
25(5)
2.1.1 The Vibrating String
25(3)
2.1.2 Potential Inside a Rectangle
28(2)
2.2 Some Aspects of Maxwell's Equations
30(7)
2.2.1 Maxwell's Equations with Fictitious Magnetic Charges and Currents
30(1)
2.2.2 Radiation from Electric Current
30(1)
2.2.3 Radiation from Magnetic Current
31(1)
2.2.4 Relations Between Vector Potentials and Far Fields
31(1)
2.2.5 Review of Fields as Sources of Radiation (Equivalence Principle)
32(1)
2.2.6 Equivalence of Surface Conduction Current Density, Js and Tangential Magnetic Field Source n x Hs
33(1)
2.2.7 Equivalence of Surface Magnetic Current Density, Ms, and Tangential Electric Field Source Es x n
34(1)
2.2.8 Images of Electric and Magnetic Currents
35(2)
2.3 Problems
37(2)
References
39(2)
Chapter 3 General Formulation of the Cavity Model 41(18)
3.1 Introductory Remarks
41(2)
3.2 Introducing the Cavity Model
43(1)
3.3 The Thin Substrate Assumption
44(1)
3.4 Solution for Cavity Fields
45(2)
3.5 Radiation Field
47(1)
3.6 Feed Modeling
48(1)
3.7 Losses in Cavity
49(2)
3.8 Input Impedance
51(1)
3.9 VSWR Bandwidth
52(3)
3.10 Qualitative Description of the Results Predicted by the Cavity Model
55(1)
3.11 Limitations of the Cavity Model Analysis
56(1)
3.12 Problems
56(1)
References
57(2)
Chapter 4 Characteristics of the Rectangular Patch Antenna 59(48)
4.1 Geometry of the Rectangular Patch
59(1)
4.2 Characteristics of the Normal Modes
59(19)
4.2.1 Magnetic Surface Currents
59(3)
4.2.2 Resonant Frequencies
62(1)
4.2.3 Far-field Formulas
63(3)
4.2.4 Illustration of Radiation Pattern
66(1)
4.2.5 E Plane and H Plane Patterns
67(1)
4.2.6 Effective Loss Tangent [ 7]
67(3)
4.2.7 Radiation Efficiency, Directivity, Gain, Total Q and Bandwidth
70(7)
4.2.7.1 Radiation efficiency
70(1)
4.2.7.2 Directivity and gain
71(2)
4.2.7.3 Total Q and bandwidth
73(2)
4.2.7.4 Observations
75(2)
4.2.8 Variations of Directivity, Gain and Bandwidth with Aspect Ratio
77(1)
4.3 Probe-Fed Rectangular Patch
78(14)
4.3.1 Modeling the Feed
78(1)
4.3.2 Electric Field under the Patch
79(1)
4.3.3 Resonant Resistance
80(3)
4.3.4 Far Field Formulas
83(1)
4.3.5 Cross Polarization Characteristics
83(9)
4.3.5.1 General remarks
83(1)
4.3.5.2 Dependences on feed position, substrate thickness, and resonant frequency
84(1)
4.3.5.3 Dependence on aspect ratio
85(7)
4.4 Rectangular Patch on a Cylindrical Surface
92(10)
4.4.1 Resonant Frequencies
92(2)
4.4.2 Radiation Field
94(3)
4.4.3 Input Impedance
97(1)
4.4.4 Illustrative Results
98(9)
4.4.4.1 Radiation patterns
98(2)
4.4.4.2 Total Q factor
100(1)
4.4.4.3 Input impedance
101(1)
4.5 Concluding Remarks
102(1)
4.6 Problems
103(2)
References
105(2)
Chapter 5 Characteristics of the Circular Patch Antenna 107(20)
5.1 Geometry and Coordinate Systems
107(1)
5.2 Characteristics of Normal Modes
107(4)
5.2.1 Internal Fields
107(2)
5.2.2 Resonant Frequencies
109(1)
5.2.3 Radiation Fields
110(1)
5.3 Coaxial Fed Circular Patch
111(2)
5.3.1 Internal and Radiation Fields
111(1)
5.3.2 Losses and Q
112(1)
5.3.3 Input Impedance
113(1)
5.4 Illustrative Results
113(4)
5.4.1 Magnetic Current Distribution
113(2)
5.4.2 Radiation Patterns
115(1)
5.4.3 Radiation Efficiency, Directivity, Gain, Total Q and Bandwidth
116(1)
5.4.4 Input Impedance
116(1)
5.5 Cross Polarization Characteristics
117(6)
5.6 Problems and Projects
123(3)
5.6.1 Problems
123(2)
5.6.2 Projects
125(1)
References
126(1)
Chapter 6 The Annular-Ring Patch and the Equitriangular Patch 127(36)
6.1 The Annular-Ring Patch
127(17)
6.1.1 Geometry and Coordinate Systems
127(1)
6.1.2 Characteristics of Normal Modes
127(7)
6.1.2.1 Internal fields
127(2)
6.1.2.2 Resonant frequencies
129(2)
6.1.2.3 Radiation fields and patterns
131(2)
6.1.2.4 Losses and Q
133(1)
6.1.3 Coaxial Fed Annular Ring Patch
134(5)
6.1.3.1 Internal and radiation fields
134(3)
6.1.3.2 Input impedance
137(2)
6.1.4 Some Experimental Results
139(5)
6.1.4.1 Resonant frequencies
139(2)
6.1.4.2 Radiation patterns
141(1)
6.1.4.3 Input impedance
141(3)
6.1.5 Summary
144(1)
6.2 The Equitriangular Patch
144(13)
6.2.1 Geometry and Modal Fields
144(2)
6.2.2 Resonant Frequencies
146(1)
6.2.3 Radiation Fields and Patterns
147(3)
6.2.4 Input Impedance of Coaxial Fed Equitriangular Patch
150(6)
6.2.5 Comparison with Experimental Results
156(8)
6.2.5.1 Resonant frequencies
156(1)
6.2.5.2 Input impedance
156(1)
6.3 Comparison of Characteristics of the Rectangular, Circular, Equitriangular and Annular Ring Patches
157(2)
6.4 Problems and Projects
159(2)
References
161(2)
Chapter 7 Introduction to Full Wave Analysis 163(26)
7.1 Rectangular Patch with a Dielectric Cover-Introducing the Full Wave Moment Method Analysis
164(10)
7.1.1 Geometry and Procedure of Analysis
164(1)
7.1.2 Integral Equation for the Patch Surface Current Density
165(3)
7.1.3 Galerkin's Method
168(2)
7.1.4 Input Impedance
170(1)
7.1.5 Some Numerical Results
171(1)
7.1.6 Discussion
172(2)
7.2 Finite Difference Time Domain Method
174(12)
7.2.1 Maxwell's Equations and the Yee Algorithm
174(4)
7.2.2 Treatment of Dielectric Interfaces
178(1)
7.2.3 Absorbing Boundary Conditions
178(2)
7.2.4 Excitation Source
180(1)
7.2.5 Feed Modeling and Input Impedance Calculation
180(3)
7.2.5.1 Microstrip line feed
180(2)
7.2.5.2 Coaxial feed
182(1)
7.2.6 Far-Field Radiation Patterns
183(3)
7.3 Problems
186(1)
References
186(3)
Chapter 8 Microstrip Patch Antennas with Adjustable Air Gaps 189(32)
8.1 Bandwidth Limitations of the Basic Microstrip Antenna
189(1)
8.2 Frequency Response Characteristics of Microstrip Patch Antennas
190(2)
8.3 Introduction to Microstrip Patch Antennas with Adjustable Air Gaps
192(2)
8.3.1 Geometry
192(1)
8.3.2 Heuristic Derivation of Effective Permittivity and Resonant Frequency
193(1)
8.4 Cavity Model Analysis of the Circular Patch Antenna with an Air Gap
194(7)
8.4.1 Geometry and General Considerations
194(1)
8.4.2 Resonant Frequencies
195(2)
8.4.3 Fields of the Coaxially-fed Two-layered Cavity
197(2)
8.4.4 Radiation Fields and Input Impedance
199(1)
8.4.5 Theoretical and Experimental Results
200(1)
8.5 The Annular Ring Patch Antenna with an Air Gap
201(2)
8.6 Full Wave Moment Method Analysis of the Rectangular Patch Antenna with an Air Gap
203(7)
8.6.1 Geometry and Procedure of Analysis
203(1)
8.6.2 Integral Equation for the Patch Surface Current Density
204(3)
8.6.3 Galerkin's Method
207(1)
8.6.4 Input Impedance
208(1)
8.6.5 Some Numerical Results
209(1)
8.7 Aperture Coupled and Stripline Fed Patch Antenna with Air Gaps
210(6)
8.7.1 Aperture Coupled. Patch Antenna
210(3)
8.7.2 Stripline Fed Patch Antenna with Air Gap
213(3)
8.8 Concluding Remarks
216(2)
8.9 Problems and Projects
218(1)
References
219(2)
Chapter 9 Broadbanding Techniques I-General Principles, Probe Compensation, Coplanar Parasitic Patches, Stacked Parasitic Patches 221(26)
9.1 Introductory Remarks
221(1)
9.2 Input Impedance of Coaxially Fed Rectangular Patch Antenna on Electrically Thick Substrate
221(4)
9.2.1 Changes of Impedance as Substrate Thickness Increases
221(3)
9.2.2 Optimization of Feed Position for Maximum Bandwidth
224(1)
9.3 General Principles of Broadbanding Using Parasitic Elements and Slots
225(5)
9.4 Probe Compensation in Thick Microstrip Patches
230(2)
9.5 Coplanar Parasitic Patches
232(4)
9.6 Stacked Parasitic Patches
236(6)
9.6.1 The Experimental Study of Lee, Lee and Bobinchak
236(3)
9.6.2 The Theoretical Study of Lee, Chen and Lee [ 23]
239(3)
9.7 Projects
242(3)
References
245(2)
Chapter 10 Broadbanding Techniques II-The U-Slot Patch Antenna 247(30)
10.1 Introductory Remarks
247(1)
10.2 The Original Study
247(4)
10.3 The Study of Lee et al. [ 4]
251(12)
10.3.1 Scope of the Study
251(1)
10.3.2 VSWR, Radiation Patterns and Gain
252(7)
10.3.3 Effects of Slot Width and Length
259(2)
10.3.4 Thickness Study
261(2)
10.4 Rectangular U-Slot Patch Antenna on Material Substrate
263(3)
10.4.1 The Study of Tong et al. [ 5]
263(1)
10.4.2 Attempt at Arriving at Empirical Formulas for Design
264(1)
10.4.3 Some Design Guides
265(1)
10.5 Double U-slot Rectangular Patch Antenna
266(1)
10.6 Dual-Beam U-Slot Patch Antenna
267(5)
10.7 Variations of the U-Slot Patch Antenna
272(2)
10.8 Dual-Band, Triple Band and Circularly Polarized U-Slot Patch Antennas
274(1)
10.9 Projects
274(1)
References
275(2)
Chapter 11 Broadbanding Techniques III-The L-Probe Coupled Patch and the Meandering-Probe Fed Patch 277(36)
11.1 Introductory Remarks
277(1)
11.2 Experimental Results of the L-Probe Fed Patch Antenna
277(12)
11.2.1 Basic Characteristics
277(3)
11.2.2 Parametric Study
280(2)
11.2.3 Numerical Studies
282(7)
11.3 Patch Antenna with Twin L-Probe Feed
289(8)
11.3.1 Basic Characteristics
289(3)
11.3.2 Parametric Studies
292(5)
11.4 Wide-Band Patch Antenna Fed by a Meandering Probe
297(3)
11.5 Wideband Patch Antennas Fed by Printed Meandering Strip
300(8)
11.5.1 Geometries of Antennas
300(2)
11.5.2 Performance Characteristics
302(41)
11.5.2.1 First order meandering strip
302(2)
11.5.2.2 Second and third order PMS
304(4)
11.6 Variations of the L-Probe Coupled Patch Antenna
308(1)
11.7 Dual-Band and Circularly Polarized L-Probe Coupled Patch Antennas
309(1)
11.8 Projects
310(1)
References
310(3)
Chapter 12 Broadbanding Techniques IV-Aperture Coupled Patches 313(30)
12.1 Introductory Remarks
313(2)
12.2 Non-Resonant Slots
315(5)
12.3 Resonant Slots
320(2)
12.4 Aperture Coupled Stacked Patches
322(9)
12.5 Aperture Coupled Stacked Patches with Coplanar Parasitic Elements
331(5)
12.6 Comparison between Probe-Fed Stacked Patches and Aperture-Coupled Stacked Patches
336(3)
12.7 Projects
339(3)
References
342(1)
Chapter 13 Size Reduction Techniques 343(38)
13.1 General Remarks
343(1)
13.2 Methods of Reducing the Patch Size
343(16)
13.2.1 Use of Shorting Wall Quarter Wave Patch
343(8)
13.2.1.1 Introduction
343(1)
13.2.1.2 Formula for resonant frequency
344(1)
13.2.1.3 Experimental results
345(6)
13.2.2 Partially Shorted Patch and Planar Inverted F Antenna
351(1)
13.2.3 Use of Shorting Pin
352(4)
13.2.4 The Folded Patch
356(3)
13.3 Small-Size Wide-Bandwidth Patch Antennas
359(18)
13.3.1 The U-Slot Technique
360(11)
13.3.1.1 U-slot patch antenna on high dielectric constant substrates
360(1)
13.3.1.2 U-slot patch antenna with shorting wall
360(2)
13.3.1.3 U-slot patch antenna with shorting pin
362(2)
13.3.1.4 Half-structures
364(7)
13.3.2 The L-probe Technique
371(2)
13.3.2.1 The two-layer L-probe-fed patch antenna
371(1)
13.3.2.2 The two-layer L-probe-fed patch antenna with a shorting wall
372(1)
13.3.3 Shorted Stacked Patches
373(8)
13.3.3.1 Stacked patches with shorting walls
373(1)
13.3.3.2 Stacked patches with shorting pins
374(3)
13.4 Summary and Concluding Remarks
377(1)
13.5 Projects
378(1)
References
378(3)
Chapter 14 Dual-and Multi-Band Designs 381(44)
14.1 Introductory Remarks
381(1)
14.2 Dual-Band Stacked Circular Patches
381(6)
14.2.1 Basic Characteristics
381(2)
14.2.2 Dual-Frequency Stacked Circular Patches with Airgaps
383(3)
14.2.3 Multi-Band Stacked Patches
386(1)
14.3 Use of Dual Modes in Rectangular Patch
387(4)
14.4 Use of Triple Modes in an Equilateral Triangular Patch
391(1)
14.5 Loaded Patches
392(7)
14.5.1 Dual-Frequency Patch with Reactive Loading
392(3)
14.5.2 Triple-Band Patch with Reactive Loading
395(4)
14.6 Dual-Band Patch with Slots
399(4)
14.6.1 Basic Characteristics
399(3)
14.6.2 Slot-Loaded Short-Circuited Dual-Band Patch Antenna
402(1)
14.7 Use of U-Slots
403(16)
14.7.1 Large Frequency Ratios
404(4)
14.7.1.1 Dual-band design
405(1)
14.7.1.2 Triple and quadruple band designs
405(3)
14.7.2 Small Frequency Ratios
408(17)
14.7.2.1 L-probe Fed dual and triple band patch antennas with U-Slots
409(6)
14.7.2.2 Single-layer single-patch dual band and triple-band patch antennas
415(4)
14.8 Dual Frequency Wideband L-probe Fed Patch
419(4)
14.9 Concluding Remarks
423(1)
14.10 Projects
423(1)
References
423(2)
Chapter 15 Dual Polarized Patch Antenna Designs 425(34)
15.1 General Remarks
425(1)
15.2 Basic Designs
425(3)
15.2.1 Coaxial Probe Feed
426(1)
15.2.2 Microstrip Edge Feed
426(1)
15.2.3 Aperture-Coupled Feed
427(1)
15.3 Enhancement in Isolation and Bandwidth for Aperture-Coupled Patch Antennas
428(4)
15.3.1 Crossed-Slot Coupling
428(1)
15.3.2 Aperture-Coupling with Parallel Microstrip Lines
429(1)
15.3.3 Aperture Coupling with Semi-Balance Feed
430(1)
15.3.4 Etched Cross-shaped Patch
430(2)
15.4 Design of Wideband L-Probe-Fed Dual-Polarized Patch Antennas
432(7)
15.4.1 Basic Design
432(1)
15.4.2 Dual-Feed Design
432(7)
15.5 Design of a Two-Element Array
439(5)
15.6 Dual Polarized Patch Antenna Fed by Meandering Probes
444(11)
15.7 Projects
455(1)
References
456(3)
Chapter 16 Circular Polarization 459(68)
16.1 Introduction
459(12)
16.1.1 Elliptical, Linear and Circular Polarization
459(1)
16.1.2 Axial Ratio, Axial Ratio Bandwidth, Cross Polarization
460(1)
16.1.3 Illustration by the Cross Dipole
461(3)
16.1.3.1 Hertzian dipole elements
461(2)
16.1.3.2 Half-wave dipole elements
463(1)
16.1.4 Complex Effective Length
464(1)
16.1.5 Reception of Elliptically Polarized Wave
465(2)
16.1.6 Polarization Mismatch Factor
467(1)
16.1.7 Applications of Circular Polarization
468(1)
16.1.8 Overview of Circularly Polarized Patch Antennas
468(3)
16.2 Single Feed Circularly Polarized Patch Antennas
471(6)
16.2.1 General Principles
471(1)
16.2.2 The Almost Square Patch and the Square Patch with Truncated Corners
472(4)
16.2.3 The Elliptical Patch
476(1)
16.3 Broadbanding of Single Feed Circularly Polarized Patch Antennas
477(10)
16.3.1 Effect of Substrate Thickness
478(1)
16.3.2 Broadbanding Using U-slot
479(1)
16.3.3 Broadbanding Using L-probe
480(6)
16.3.4 Broadbanding Using Stacked Patches
486(1)
16.4 Two Single Feed Circularly Polarized Patch Antennas with Asymmetrical Slots
487(2)
16.5 Dual-Band Circularly Polarized Stacked Patches with Asymmetrical U-Slots
489(9)
16.5.1 Antenna Design
493(2)
16.5.2 Prototype and Measurement Results
495(3)
16.6 Dual Feed Circularly Polarized Patch Antennas
498(9)
16.6.1 General Principles
498(4)
16.6.2 Broadbanding Using Hybrid Feeding Technique
502(5)
16.6.2.1 Square patch antenna operated at TM01 mode [ 21]
502(3)
16.6.2.2 Circular patch antenna operated at TM21 mode [ 22]
505(2)
16.7 Designs using Sequential Rotation Feeding
507(9)
16.7.1 Sequential Feed Array
509(4)
16.7.1.1 Basic principles
509(4)
16.7.1.2 Example of a planar array of 8 circular patches with notches
513(1)
16.7.2 Sequentially Fed Patches
513(3)
16.7.2.1 Introductory remarks
513(1)
16.7.2.2 Circularly polarized patch antenna fed by four L-probes
514(2)
16.8 Size Reduction Techniques
516(7)
16.8.1 Small Circularly Polarized Folded Patch Antenna
518(2)
16.8.2 Small Circularly Polarized Patch Antenna with Slots and Tails
520(3)
16.9 Projects
523(1)
References
524(3)
Chapter 17 Reconfigurable Microstrip Patch Antennas 527(36)
17.1 Introduction
527(1)
17.2 Frequency Reconfigurable Microstrip Patch Antennas
528(10)
17.2.1 Frequency Tuning with Varactor Diodes
528(1)
17.2.2 Use of Shorting Posts
528(3)
17.2.3 A Tunable U-Slot Patch Antenna
531(3)
17.2.3.1 Antenna Geometry
531(2)
17.2.3.2 Results
533(1)
17.2.4 Patch Antenna with Switchable Slots (PASS) for Dual-Band Operation
534(4)
17.2.4.1 Geometry and Principle of Operation
534(1)
17.2.4.2 Experimental Results
535(1)
17.2.4.3 Simulation Results
536(2)
17.3 Polarization Reconfigurable Microstrip Patch Antennas
538(14)
17.3.1 Polarization Reconfigurable Square Patch with Shorting Posts
541(2)
17.3.2 Patch Antenna with Switchable Slots (PASS) for Circular Polarization Diversity
543(4)
17.3.3 Polarization Agile E-Shaped Patch Antenna
547(5)
17.3.3.1 Operation Principle
548(1)
17.3.3.2 Antenna Design
549(2)
17.3.3.3 Antenna Performance
551(1)
17.4 Example of Pattern Reconfigurable Microstrip Patch Antenna
552(7)
17.4.1 Operation Principle
553(1)
17.4.2 Antenna Structure
554(2)
17.4.3 Performance of the Antenna
556(3)
17.5 Concluding Remarks
559(2)
17.6 Project
561(1)
References
561(2)
Chapter 18 Microstrip Antenna Array I- Basic Principles and Examples of Design Below 5 GHz 563(30)
18.1 General Remarks
563(1)
18.2 Mutual Coupling
563(3)
18.3 Radiation Pattern of Antenna Array
566(2)
18.4 Antenna Gain of Patch Arrays
568(1)
18.5 Feeding Networks for Linear Arrays
569(7)
18.5.1 Series Feed
569(2)
18.5.2 Parallel Feed
571(2)
18.5.3 Series and Parallel Feeds
573(1)
18.5.4 Anti-Phase Technique
573(3)
18.6 A Wideband Low-profile Microstrip Antenna Array
576(4)
18.7 A Wideband L-probe Fed Stacked Patch Antenna Array
580(5)
18.8 A U-slot Patch Microstrip Antenna Array
585(5)
18.9 Concluding Remarks
590(1)
18.10 Projects
591(1)
References
591(2)
Chapter 19 Microstrip Antenna Array II-Sixty (60) GHz Antenna Array Design and Applications 593(36)
19.1 General Remarks
593(1)
19.2 Wideband High-Gain 60-GHz LTCC L-Probe Patch Antenna Array with a Soft Surface
593(3)
19.3 Low-Cost Wideband Microstrip Antenna Array for 60-GHz Applications
596(5)
19.3.1 Linearly Polarized Antenna Array
596(3)
19.3.2 Circularly Polarized Antenna Array
599(2)
19.4 A Low-Profile Unidirectional Printed Antenna for Millimeter-Wave Applications
601(8)
19.5 Low-Cost High-Gain and Broadband Substrate-Integrated-Waveguide-Fed Patch Antenna Array for 60-GHz Band
609(8)
19.5.1 Design Flow
609(2)
19.5.2 Single Element
611(2)
19.5.3 Waveguide to Substrate Integrated Waveguide Transition
613(1)
19.5.4 Feed Network
613(2)
19.5.5 Performance of the Antenna Array
615(2)
19.6 60-GHz Substrate Integrated Waveguide Fed Cavity-Backed Aperture-Coupled Microstrip Patch Antenna Arrays
617(9)
19.6.1 Design Flow
618(2)
19.6.2 Single Cavity-Backed Patch Antenna
620(2)
19.6.3 Feed Network of 2 x 2 Subarrays
622(1)
19.6.4 Performance of the Antenna Array
622(4)
19.7 Concluding Remarks
626(1)
References
627(2)
Chapter 20 Novel Material Patch Antennas 629(24)
20.1 Introduction
629(1)
20.2 Dense Dielectric Patch Antennas
629(5)
20.3 Millimeter-wave Dense Dielectric Patch Antenna Array
634(4)
20.4 Perforated Dense Dielectric Patch Array
638(4)
20.5 A Water Dense Dielectric Patch Antenna
642(4)
20.6 Water Dielectric Patch Antenna with Conical Radiation
646(4)
20.7 Concluding Remarks
650(1)
20.8 Projects
650(1)
References
651(2)
Index 653