Muutke küpsiste eelistusi

E-raamat: Microsurgery: Advances, Simulations and Applications

Edited by (Nagoya University, Japan), Edited by (Nagoya University, Japan)
  • Formaat: 300 pages
  • Ilmumisaeg: 24-Apr-2012
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9789814364706
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 182,00 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 300 pages
  • Ilmumisaeg: 24-Apr-2012
  • Kirjastus: Pan Stanford Publishing Pte Ltd
  • ISBN-13: 9789814364706
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book explains, using the example of endovascular intervention, the development of in vitro simulators for biomedical applications based on the scientific context in the robotics area and the explanation of the medical procedure to be simulated. It presents modeling methods for in vitro representation of human tissue and for representing tissue integrity during endovascular surgery simulation. Additionally, applications of this in vitro vasculature modeling technology are presented: flow control for human blood pressure simulation, computer fluid dynamics simulations using vasculature morphology, catheter insertion robot control and vasculature imaging based on magnetic trackers, and tailor-made scaffolds for blood vessel regeneration.

Arvustused

"This book presents an important and timely subject and collects a wide range of knowledge derived from the contributors vast experience. It is the first to integrate medicine and engineering exceptionally well. It is a great text for graduate-level students, researchers, and doctors specializing in microsurgery." Prof. Tzyh Jong Tarn - Washington University in St. Louis, USA

Preface v
1 Introduction
1(46)
Carlos Tercero
Seiichi Ikeda
Tomoyuki Uchida
Toshio Fukuda
Fumihito Arai
Makoto Negoro
1.1 Minimally Invasive Surgery
1(7)
1.1.1 Endovascular Surgery
2(1)
1.1.1.1 Neuro-endovascular treatments
2(2)
1.1.1.2 Percutaneous trans-luminal coronary angioplasty
4(1)
1.1.1.3 Trans-catheter aortic valve implantation
5(1)
1.1.2 Laparoscopic Surgery and Single-Port Surgery
5(1)
1.1.3 Stereotactic and Functional Neurosurgery
6(1)
1.1.4 Natural Orifice Trans-Luminal Endoscopic Surgery
6(1)
1.1.4.1 Digestive tract endoscopies
6(1)
1.1.4.2 Respiratory tract endoscopies
7(1)
1.1.4.3 Transurethral resection of prostate
7(1)
1.1.5 Extracorporeal Shock Wave Lithotripsy
7(1)
1.1.6 Stereotactic Gamma Radiosurgery
8(1)
1.2 Medical Robotics
8(15)
1.2.1 Control Systems
8(1)
1.2.2 Diagnostic and Training
9(2)
1.2.3 Catheters and Guide Wires
11(2)
1.2.4 Navigation Systems
13(1)
1.2.5 Telesurgery
14(6)
1.2.6 Modular Robots for Endoluminal Surgery
20(1)
1.2.7 Drug Delivery Systems
21(1)
1.2.8 Rehabilitation and Recovery
22(1)
1.3 Regenerative Medicine and Artificial Organs
23(24)
1.3.1 Artificial Organs
25(1)
1.3.1.1 Artificial heart
25(1)
1.3.1.2 Artificial vascular graft
26(1)
1.3.1.3 Artificial kidney
27(1)
1.3.1.4 Artificial liver
27(1)
1.3.1.5 Artificial skin
27(1)
1.3.1.6 Artificial bone
28(1)
1.3.2 Cell Implantation-Based Regeneration
28(1)
1.3.3 Tissue Engineering-Based Regeneration
29(2)
1.3.4 Production Methods of Biodegradable Scaffolds
31(1)
1.3.4.1 Electrospinning
31(1)
1.3.4.2 Porogen leaching
32(1)
1.3.4.3 Three-dimensional printing
33(1)
1.3.4.4 Soft lithography
34(1)
1.3.4.5 Membranous microfluidic device (MeME process)
35(1)
1.3.5 Cell Sheet Engineering
35(12)
2 Endovascular Treatments for Brain Attack Introduction
47(26)
Motoharu Hayakawa
Takeya Watabe
Jumpei Oda
Yuichi Hirose
2.1 Cerebral Aneurysms
48(7)
2.1.1 Ruptured Cerebral Aneurysm
48(1)
2.1.2 Unruptured Cerebral Aneurysm
48(1)
2.1.3 Treatments
49(1)
2.1.3.1 Clipping
49(2)
2.1.3.2 Cerebral aneurysm embolization
51(4)
2.2 Carotid Artery Stenosis
55(4)
2.2.1 Treatment
56(1)
2.2.2 Carotid Artery Endarterectomy
56(1)
2.2.3 Carotid Artery Stenting
57(2)
2.3 Cerebral Infarction
59(6)
2.3.1 Cerebral Thrombosis
59(1)
2.3.2 Cardiogenic Cerebral Embolization
60(1)
2.3.3 Lacunar Infarction
60(1)
2.3.4 Others
60(1)
2.3.5 Treatments
61(1)
2.3.5.1 rt-PA (Tissue plasminogen activator: alteplase) intravenous therapy
61(1)
2.3.5.2 Revascularization
61(4)
2.4 Intracerebral Brain Hemorrhage
65(8)
3 Patient-Specific Vascular Modeling
73(52)
Seiichi Ikeda
Carlos Tercero
Toshio Fukuda
Fumihito Arai
Makoto Negoro
Ikuo Takahashi
3.1 Introduction and Background
73(2)
3.2 Required Properties for the Vascular Model
75(3)
3.2.1 Patient-Specific Reproduction
75(2)
3.2.2 Reproduction of Physical Characteristics
77(1)
3.2.3 Reproduction of Membranous Vascular Configuration
78(1)
3.2.4 Summary of Required Conditions
78(1)
3.3 Medical Image Processing
78(5)
3.3.1 Medical Imaging Modalities
79(2)
3.3.2 Three-Dimensional Vessel Shape Reconstruction from CT
81(1)
3.3.3 Three-Dimensional Vessel Shape Reconstruction from MRI
82(1)
3.4 Additional Vascular Shape Modification
83(2)
3.5 Patient-Specific Vascular Modeling
85(2)
3.6 Reproduction of Membranous Vessel Structure
87(2)
3.7 Reproduction of Surrounding Brain Structure
89(1)
3.8 Reproduction of Subarachnoid Space
90(2)
3.9 Improvement of Visibility
92(1)
3.10 Silicone Membrane Thickness Controllability
93(3)
3.11 Clinical Evaluation
96(16)
3.11.1 Preparation
97(1)
3.11.2 Flow Visualization
98(3)
3.11.3 Medical Treatment Simulation
101(1)
3.11.3.1 Aneurismal coil embolization simulation
101(4)
3.11.4 Aneurism Clipping Simulation
105(1)
3.11.5 Applicability for Medical Imaging Modalities
106(1)
3.11.5.1 Fluoroscopic X-ray Imaging
106(2)
3.11.5.2 Ultrasound imaging
108(2)
3.11.5.3 Clinical evaluation summary
110(2)
3.12 Comprehensive Surgical Simulator --- EVE
112(13)
3.12.1 Hardware Construction: Systematization
112(4)
3.12.2 Surgical Simulation
116(2)
3.12.3 Evaluation of Surgical Simulator
118(1)
3.12.3.1 Evaluation by interventionalists
118(3)
3.12.3.2 Evaluation by layperson
121(4)
4 Respect for Tissue Representation Using Photoelastic Stress Analysis for Endovascular Surgery Simulation
125(34)
Carlos Tercero
Motoki Matsushima
Seiichi Ikeda
Toshio Fukuda
Fumihito Arai
Makoto Negoro
Ikuo Takahashi
4.1 Photoelastic Stress Analysis Fundamental Equations
126(2)
4.2 Vasculature Modeling for Stress Analysis
128(1)
4.3 Blue Light Transmittance Equation
128(2)
4.4 Polariscope for Stress Magnitude Analysis
130(4)
4.5 Camera Calibration
134(1)
4.6 Photoelastic Coefficient of Urethane Elastomer
135(2)
4.7 Photoelastic Stress Analysis Error Quantification
137(3)
4.8 Angular Distortion Correction
140(1)
4.9 Stress Direction Measurements
141(2)
4.10 Three-Dimensional Visualization of Stress
143(5)
4.11 Complementary Image Processing for Real-Time Analysis
148(8)
4.11.1 Vision System
148(1)
4.11.2 Filtering
149(1)
4.11.3 Stress and Deformation Measurement
150(1)
4.11.4 Catheter Tip Search
151(1)
4.11.5 Reference Trajectory Construction
152(4)
4.12 Summary
156(3)
5 Numerical Simulation for Blood Flow
159(46)
Masahiro Kojima
Yasuhiko Sakai
Kouji Nagata
Haruo Isoda
5.1 Basic Equations of Flow Analysis
160(10)
5.1.1 Introduction
160(2)
5.1.2 Law of Conservation of Mass
162(1)
5.1.3 Law of Conservation of Momentum
163(7)
5.2 Discretization Algorithm
170(13)
5.2.1 Finite-Difference Method
172(3)
5.2.2 First Derivative
175(1)
5.2.3 Taylor Series Expansion
175(2)
5.2.4 Approximation of the Second Derivative
177(2)
5.2.5 The Algebraic Equation system
179(3)
5.2.6 Finite-Volume Method
182(1)
5.3 Numerical Solution
183(10)
5.3.1 The Choice of Grid
187(1)
5.3.2 Approximation Using Regular Grids
188(1)
5.3.3 Grid Generation
189(4)
5.4 Blood Flow Simulations for Internal Carotid Artery
193(8)
5.4.1 Introduction
193(1)
5.4.2 Studied Morphology
193(2)
5.4.3 Mechanical Properties
195(1)
5.4.4 Fluid Calculation Method
195(1)
5.4.5 Boundary Conditions
196(1)
5.4.6 Wall Shear Stress
197(1)
5.4.7 Velocity Magnitude
197(1)
5.4.8 Streamline
198(1)
5.4.9 Mises Stress
199(1)
5.4.10 Discussion
200(1)
5.4.11 Conclusion
200(1)
5.5 Outlook for the Future of Computer Fluid Dynamics
201(4)
6 Pumps for Human Blood Pressure Simulation
205(20)
Carlos Tercero
Motoki Matsushima
Seiichi Ikeda
Toshio Fukuda
Erick Tijerino
Makoto Negoro
Ikuo Takahashi
6.1 Multilayer Urethane Model Elaboration
207(1)
6.2 Lobe Pump Design
208(3)
6.2.1 Lobe Profiles and Mechanism
208(2)
6.1.2 Feedback Control
210(1)
6.3 Image Processing Software for Stress Measurement
211(3)
6.4 Stress Measurement
214(2)
6.5 Blood Pressure Simulation in Saccular Aneurysm Model with Bleb
216(4)
6.5.1 Saccular Aneurysm with Bleb Model Design
217(2)
6.5.2 Stress Analysis in the Bleb Model Using Static Pressure
219(1)
6.5.3 Stress Analysis in the Bleb Model Using Blood Pressure Simulation
220(1)
6.6 Portable Simulator for Blood Pressure
220(5)
7 Magnetic Trackers: Robot Control and Vasculature Imaging
225(38)
Carlos Tercero
Seiichi Ikeda
Shi Chaoyang
Toshio Fukuda
Fumihito Arai
Makoto Negoro
Ikuo Takahashi
7.1 Robot Control with Magnetic Trackers
225(2)
7.2 Robotic Camera for Digital Subtraction Angiography Simulation
227(4)
7.2.1 Mechanical Design
228(2)
7.2.2 Electronics Design
230(1)
7.3 Robot Manipulation
231(6)
7.3.1 Silicone Models of Vasculature
231(1)
7.3.2 Magnetic Tracker
232(1)
7.3.3 Controller Design
232(2)
7.3.4 Robot Manipulation
234(2)
7.3.5 Integration of the Robotic Camera with EVE
236(1)
7.4 Robot Guidance
237(12)
7.4.1 Evaluation Field
237(2)
7.4.2 Path Planning and Control Software
239(1)
7.4.2.1 Controller design for ACIS
239(1)
7.4.2.2 Magnetic tracker
240(1)
7.4.3 Preliminary Experiment for Path Reconstruction
240(2)
7.4.4 One-Dimensional Path Reconstruction
242(2)
7.4.5 Two-Dimensional Path Reconstruction
244(5)
7.5 Vasculature Imaging Based on Magnetic Trackers and Intravascular Ultrasounds
249(14)
7.5.1 Sensor Fusion of IVUS and Magnetic Tracker
251(1)
7.5.2 Estimation of Disturbance on Magnetic Tracker Measurements
252(1)
7.5.3 Environment for Hybrid Probe Evaluation
253(1)
7.5.4 Image Processing and Kinematics
254(3)
7.5.5 3D Imaging and Rendering
257(1)
7.5.6 Error Measurement
258(5)
8 Tailor-Made and Biodegradable Vascular Scaffolds
263(44)
Tomoyuki Uchida
Hiroyuki Oura
Seiichi Ikeda
Chengzhi Hu
Carlos Tercero
Toshio Fukuda
Fumihito Arai
Makoto Negoro
8.1 Background
263(3)
8.2 Preparation of Polymer Solution Including Salt Microparticles
266(1)
8.3 Fabrication of Carotid Artery Scaffold
267(2)
8.4 Evaluation of Wall Thickness and Young's Modulus
269(2)
8.4.1 Measurement of the Thickness of PLCL Membranes after Dip Coating
269(1)
8.4.2 Tensile Test
269(2)
8.5 Spatial Distribution of Pores Inside Scaffolds
271(3)
8.6 Cell Culture for Confirmation of Biocompatibility and Safeness of Fabrication Methods
274(3)
8.6.1 General Cell Culture
274(1)
8.6.2 Cell Seeding and Culture on Scaffolds
274(1)
8.6.3 Observation of HUVECs on Scaffolds
275(2)
8.7 Development of Biodegradable Scaffolds by Casting from Magnetically Assembled Sugar Particles
277(30)
8.7.1 Preparation of Magnetic Sugar Particles
278(3)
8.7.2 Fabrication of Porous PLCL Sheet-Like Scaffolds by Magnetic Sugar Leaching
281(2)
8.7.3 Evaluation of Young's Modulus and Porosity
283(1)
8.7.3.1 Evaluation of Young's modulus
283(3)
8.7.4 Magnetic Manipulation of Particles
286(2)
8.7.5 Fabrication of a Tubular Scaffold
288(1)
8.7.6 Cell Culture for Confirmation of Biocompatibility and Safeness of Fabrication Methods
289(1)
8.7.6.1 General cell culture
289(1)
8.7.6.2 Cell seeding and culture on scaffolds
290(1)
8.7.6.3 Observation of viable cells on scaffolds
290(2)
8.7.7 MSP Steering Principle, Modeling and Evaluation
292(1)
8.7.7.1 MSP magnetically steering principle
292(1)
8.7.7.2 Fluid dynamics of MSP in hexane
293(1)
8.7.7.3 Electromagnetic analysis for magnetic steering
294(1)
8.7.7.4 Motion simulation of MSP in hexane
295(1)
8.7.7.5 Calculation of magnetic field
296(2)
8.7.7.6 MSP steering evaluation
298(9)
Index 307
Toshio Fukuda received his bachelors degree from Waseda University, Tokyo, Japan, in 1971, and masters and Dr.Eng. from the University of Tokyo, Japan, in 1973 and 1977, respectively. In 1977, he joined the National Mechanical Engineering Laboratory. He joined the Science University of Tokyo, Japan, in 1982 and Nagoya University, Nagoya, Japan, in 1989. Currently, he is director of Center for MicroNano Mechatronics and professor at Department of MicroNano Systems Engineering at Nagoya University, where he is mainly involved in the research fields of intelligent robotic and mechatronic system, cellular robotic system, and micro and nanorobotic system. He has been Distinguished Professor, Seoul National University, since 2009.

Carlos Tercero received his bachelors and Licenciature degrees from the Department of Electronics Engineering at Del Valle de Guatemala University, Guatemala, in 2002 and 2003. He received his M.S. degree from the Complex System Science Department of Nagoya University, Japan, in 2007, and Dr.Eng. degree from the MicroNano Systems Engineering Department of Nagoya University, in 2008. In 2008, he was the director of the Electronics and Mechatronics Engineering Departments at Del Valle de Guatemala University. Since April 2009, he has been with the Global Center of Excellence for Education and Research of MicroNano Mechatronics of Nagoya University, where he is mainly involved in the research fields of medical robotics and in vitro simulation for endovascular intervention. He is the recipient of the Society of Instrument and Control Engineers Technical Field Award (2010) and the International Symposium on MicroNano Mechatronics and Human Science Best Paper Award (2010) and also IEEE/RSJ International Conference on Robots and Systems ICROS Best Application Paper Award finalist (2010).