Muutke küpsiste eelistusi

E-raamat: Microwave Circuit Design Using Linear and Nonlinear Techniques

(Stanford, Santa Clara, and San Jose State Universities; UC-Berkeley-Extension), (Brandenburg University of Technology, Cottbus, Germany), (University of the Joint Armed Forces, Munich, Germany), (Rockwell Collins)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119741695
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 209,89 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 08-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119741695
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology

The third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material.

The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book's treatment of a wide variety of topics, like:





An in-depth discussion of the foundations of RF and microwave systems, including Maxwell's equations, applications of the technology, analog and digital requirements, and elementary definitions A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain

Perfect for microwave integrated circuit designers, the third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques also has a place on the bookshelves of electrical engineering researchers and graduate students. It's comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.
Foreword xvii
Preface to the Third Edition xix
1 RF/Microwave Systems
1(42)
1.1 Introduction
1(10)
1.2 Maxwell's Equations
11(2)
1.3 Frequency Bands, Modes, and Waveforms of Operation
13(2)
1.4 Analog and Digital Signals
15(11)
1.5 Elementary Functions
26(6)
1.6 Basic RF Transmitters and Receivers
32(2)
1.7 RF Wireless/Microwave/Millimeter Wave Applications
34(3)
1.8 Modern CAD for Nonlinear Circuit Analysis
37(1)
1.9 Dynamic Load Line
38(5)
References
39(1)
Bibliography
40(1)
Problems
41(2)
2 Lumped and Distributed Elements
43(16)
2.1 Introduction
43(1)
2.2 Transition from RF to Microwave Circuits
43(3)
2.3 Parasitic Effects on Lumped Elements
46(7)
2.4 Distributed Elements
53(1)
2.5 Hybrid Element: Helical Coil
54(5)
References
55(2)
Bibliography
57(1)
Problems
57(2)
3 Active Devices
59(146)
3.1 Introduction
59(1)
3.2 Diodes
60(50)
3.2.1 Large-Signal Diode Model
61(4)
3.2.2 Mixer and Detector Diodes
65(5)
3.2.3 Parameter Trade-Offs
70(2)
3.2.4 Mixer Diodes
72(1)
3.2.5 PIN Diodes
73(11)
3.2.6 Tuning Diodes
84(10)
3.2.7 Q Factor or Diode Loss
94(5)
3.2.8 Diode Problems
99(6)
3.2.9 Diode-Tuned Resonant Circuits
105(5)
3.3 Microwave Transistors
110(76)
3.3.1 Transistor Classification
110(3)
3.3.2 Bipolar Transistor Basics
113(14)
3.3.3 GaAs and InP Heterojunction Bipolar Transistors
127(14)
3.3.4 SiGe HBTs
141(6)
3.3.5 Field-Effect Transistor Basics
147(11)
3.3.6 GaN, GaAs, and InP HEMTs
158(7)
3.3.7 MOSFETs
165(17)
3.3.8 Packaged Transistors
182(4)
3.4 Example: Selecting Transistor and Bias for Low-Noise Amplification
186(5)
3.5 Example: Selecting Transistor and Bias for Oscillator Design
191(3)
3.6 Example: Selecting Transistor and Bias for Power Amplification
194(11)
3.6.1 Biasing HEMTs
196(2)
3.6.2 Biasing HBTs
198(2)
References
200(3)
Bibliography
203(1)
Problems
204(1)
4 Two-Port Networks
205(56)
4.1 Introduction
205(1)
4.2 Two-Port Parameters
206(10)
4.3 S Parameters
216(1)
4.4 S Parameters from SPICE Analysis
216(1)
4.5 Mason Graphs
217(4)
4.6 Stability
221(2)
4.7 Power Gains, Voltage Gain, and Current Gain
223(8)
4.7.1 Power Gain
223(6)
4.7.2 Voltage Gain and Current Gain
229(1)
4.7.3 Current Gain
230(1)
4.8 Three-Ports
231(3)
4.9 Derivation of Transducer Power Gain
234(2)
4.10 Differential S Parameters
236(4)
4.10.1 Measurements
239(1)
4.10.2 Example
239(1)
4.11 Twisted-Wire Pair Lines
240(2)
4.12 Low-Noise and High-Power Amplifier Design
242(3)
4.13 Low-Noise Amplifier Design Examples
245(16)
References
254(1)
Bibliography
255(1)
Problems
255(6)
5 Impedance Matching
261(33)
5.1 Introduction
261(1)
5.2 Smith Charts and Matching
261(8)
5.3 Impedance Matching Networks
269(1)
5.4 Single-Element Matching
269(2)
5.5 Two-Element Matching
271(1)
5.6 Matching Networks Using Lumped Elements
272(1)
5.7 Matching Networks Using Distributed Elements
273(4)
5.7.1 Twisted-Wire Pair Transformers
273(1)
5.7.2 Transmission Line Transformers
274(2)
5.7.3 Tapered Transmission Lines
276(1)
5.8 Bandwidth Constraints for Matching Networks
277(17)
References
287(1)
Bibliography
288(1)
Problems
288(6)
6 Microwave Filters
294(38)
6.1 Introduction
294(1)
6.2 Low-Pass Prototype Filter Design
295(7)
6.2.1 Butterworth Response
295(2)
6.2.2 Chebyshev Response
297(5)
6.3 Transformations
302(10)
6.3.1 Low-Pass Filters: Frequency and Impedance Scaling
302(1)
6.3.2 High-Pass Filters
302(2)
6.3.3 Bandpass Filters
304(2)
6.3.4 Narrow-Band Bandpass Filters
306(3)
6.3.5 Band-Stop Filters
309(3)
6.4 Transmission Line Filters
312(13)
6.4.1 Semilumped Low-Pass Filters
315(3)
6.4.2 Richards Transformation
318(7)
6.5 Exact Designs and CAD Tools
325(1)
6.6 Real-Life Filters
326(6)
6.6.1 Lumped Elements
326(1)
6.6.2 Transmission Line Elements
327(1)
6.6.3 Cavity Resonators
327(1)
6.6.4 Coaxial Dielectric Resonators
327(1)
6.6.5 Thin-Film Bulk-Wave Acoustic Resonator (FBAR)
327(3)
References
330(1)
Bibliography
330(1)
Problems
330(2)
7 Noise In Linear and Nonlinear Two-Ports
332(65)
7.1 Introduction
332(2)
7.2 Signal-to-Noise Ratio
334(2)
7.3 Noise Figure Measurements
336(2)
7.4 Noise Parameters and Noise Correlation Matrix
338(9)
7.4.1 Correlation Matrix
338(1)
7.4.2 Method of Combining Two-Port Matrix
339(1)
7.4.3 Noise Transformation Using the [ ABCD] Noise Correlation Matrices
339(1)
7.4.4 Relation Between the Noise Parameter and [ CA]
340(2)
7.4.5 Representation of the ABCD Correlation Matrix in Terms of Noise Parameters [ 7.4]
342(1)
7.4.6 Noise Correlation Matrix Transformations
342(1)
7.4.7 Matrix Definitions of Series and Shunt Element
343(1)
7.4.8 Transferring All Noise Sources to the Input
344(1)
7.4.9 Transformation of the Noise Sources
345(1)
7.4.10 ABCD Parameters for CE, CC, and CB Configurations
345(2)
7.5 Noisy Two-Port Description
347(6)
7.6 Noise Figure of Cascaded Networks
353(1)
7.7 Influence of External Parasitic Elements
354(3)
7.8 Noise Circles
357(3)
7.9 Noise Correlation in Linear Two-Ports Using Correlation Matrices
360(3)
7.10 Noise Figure Test Equipment
363(2)
7.11 How to Determine Noise Parameters
365(1)
7.12 Noise in Nonlinear Circuits
366(5)
7.12.1 Noise Sources in the Nonlinear Domain
368(3)
7.13 Transistor Noise Modeling
371(26)
7.13.1 Noise Modeling of Bipolar and Heterobipolar Transistors
372(12)
7.13.2 Noise Modeling of Field-effect Transistors
384(6)
References
390(3)
Bibliography
393(2)
Problems
395(2)
8 Small-and Large-Signal Amplifier Design
397(45)
8.1 Introduction
397(2)
8.2 Single-Stage Amplifier Design
399(27)
8.2.1 High Gain
399(1)
8.2.2 Maximum Available Gain and Unilateral Gain
400(7)
8.2.3 Low-Noise Amplifier
407(2)
8.2.4 High-Power Amplifier
409(1)
8.2.5 Broadband Amplifier
410(1)
8.2.6 Feedback Amplifier
411(2)
8.2.7 Cascode Amplifier
413(7)
8.2.8 Multistage Amplifier
420(1)
8.2.9 Distributed Amplifier and Matrix Amplifier
421(4)
8.2.10 Millimeter-Wave Amplifiers
425(1)
8.3 Frequency Multipliers
426(3)
8.3.1 Introduction
426(1)
8.3.2 Passive Frequency Multiplication
426(1)
8.3.3 Active Frequency Multiplication
427(2)
8.4 Design Example of 1.9-GHz PCS and 2.1-GHz W-CDMA Amplifiers
429(1)
8.5 Stability Analysis and Limitations
430(12)
References
435(3)
Bibliography
438(2)
Problems
440(2)
9 Power Amplifier Design
442(96)
9.1 Introduction
442(3)
9.2 Characterizing Transistors for Power-Amplifier Design
445(4)
9.3 Single-Stage Power Amplifier Design
449(6)
9.4 Multistage Design
455(7)
9.5 Power-Distributed Amplifiers
462(18)
9.6 Class of Operation
480(18)
9.6.1 Optimizing Conduction Angle
481(9)
9.6.2 Optimizing Harmonic Termination
490(4)
9.6.3 Analog Switch-Mode Amplifiers
494(4)
9.7 Efficiency and Linearity Enhancement PA Topologies
498(16)
9.7.1 The Doherty Amplifier
499(3)
9.7.2 Outphasing Amplifiers
502(3)
9.7.3 Kahn EER and Envelope Tracking Amplifiers
505(9)
9.8 Digital Microwave Power Amplifiers (class-D/S)
514(13)
9.8.1 Voltage-Mode Topology
516(5)
9.8.2 Current-Mode Topology
521(6)
9.9 Power Amplifier Stability
527(11)
References
530(4)
Bibliography
534(2)
Problems
536(2)
10 Oscillator Design
538(274)
10.1 Introduction
538(6)
10.2 Compressed Smith Chart
544(1)
10.3 Series or Parallel Resonance
545(1)
10.4 Resonators
546(24)
10.4.1 Dielectric Resonators
547(5)
10.4.2 YIG Resonators
552(1)
10.4.3 Varactor Resonators
552(4)
10.4.4 Ceramic Resonators
556(2)
10.4.5 Coupled Resonator
558(6)
10.4.6 Resonator Measurements
564(6)
10.5 Two-Port Oscillator Design
570(9)
10.6 Negative Resistance From Transistor Model
579(7)
10.7 Oscillator Q and Output Power
586(4)
10.8 Noise in Oscillators: Linear Approach
590(18)
10.8.1 Leeson's Oscillator Model
590(6)
10.8.2 Low-Noise Design
596(12)
10.9 Analytic Approach to Optimum Oscillator Design Using S Parameters
608(13)
10.10 Nonlinear Active Models for Oscillators
621(11)
10.10.1 Diodes with Hyperabrupt Junction
623(1)
10.10.2 Silicon Versus Gallium Arsenide
624(1)
10.10.3 Expressions for gm and Gd
625(2)
10.10.4 Nonlinear Expressions for Cgs, Ggf, and Ri
627(1)
10.10.5 Analytic Simulation of I--V Characteristics
628(1)
10.10.6 Equivalent-Circuit Derivation
628(3)
10.10.7 Determination of Oscillation Conditions
631(1)
10.10.8 Nonlinear Analysis
631(1)
10.10.9 Conclusion
632(1)
10.11 Oscillator Design Using Nonlinear Cad Tools
632(15)
10.11.1 Parameter Extraction Method
637(2)
10.11.2 Example of Nonlinear Design Methodology: 4-GHz Oscillator-Amplifier
639(6)
10.11.3 Conclusion
645(2)
10.12 Microwave Oscillators Performance
647(4)
10.13 Design of an Oscillator Using Large-Signal Y Parameters
651(2)
10.14 Example for Large-Signal Design Based on Bessel Functions
653(5)
10.15 Design Example for Best Phase Noise and Good Output Power
658(8)
Requirements
658(1)
Design Steps
658(4)
Design Calculations
662(4)
10.16 A Design Example for a 350 MHz Fixed Frequency Colpitts Oscillator
666(12)
Step 1
667(1)
Step 2 Biasing
667(1)
Step 3 Determination of the Large Signal Transconductance
668(10)
10.17 1/f NOISE
678(3)
10.18 2400 MHz MOSFET-Based Push-Pull Oscillator
681(10)
10.18.1 Design Equations
682(5)
10.18.2 Design Calculations
687(1)
10.18.3 Phase Noise
688(3)
10.19 CAD Solution for Calculating Phase Noise in Oscillators
691(15)
10.19.1 General Analysis of Noise Due to Modulation and Conversion in Oscillators
691(1)
10.19.2 Modulation by a Sinusoidal Signal
692(1)
10.19.3 Modulation by a Noise Signal
693(2)
10.19.4 Oscillator Noise Models
695(1)
10.19.5 Modulation and Conversion Noise
696(1)
10.19.6 Nonlinear Approach for Computation of Noise Analysis of Oscillator Circuits
696(3)
10.19.7 Noise Generation in Oscillators
699(1)
10.19.8 Frequency Conversion Approach
699(1)
10.19.9 Conversion Noise Analysis
699(1)
10.19.10 Noise Performance Index Due to Frequency Conversion
700(2)
10.19.11 Modulation Noise Analysis
702(2)
10.19.12 Noise Performance Index Due to Contribution of Modulation Noise
704(1)
10.19.13 PM--AM Correlation Coefficient
705(1)
10.20 Phase Noise Measurement
706(18)
10.20.1 Phase Noise Measurement Techniques
706(18)
10.21 Back to Conventional Phase Noise Measurement System (Hewlett-Packard)
724(6)
10.22 State-of-the-art
730(7)
10.22.1 Analog Signal Path
730(2)
10.22.2 Digital Signal Path
732(3)
10.22.3 Pulsed Phase Noise Measurement
735(1)
10.22.4 Cross-Correlation
736(1)
10.23 Instrument Performance
737(1)
10.24 Noise in Circuits and Semiconductors [ 10.74]
738(4)
10.25 Validation Circuits
742(9)
10.25.1 1000-MHz Ceramic Resonator Oscillator (CRO)
742(3)
10.25.2 4100-MHz Oscillator with Transmission Line Resonators
745(2)
10.25.3 2000-MHz GaAs FET-Based Oscillator
747(4)
10.26 Analytical Approach for Designing Efficient Microwave FET and Bipolar Oscillators (Optimum Power)
751(28)
10.26.1 Series Feedback (MESFET)
751(7)
10.26.2 Parallel Feedback (MESFET)
758(2)
10.26.3 Series Feedback (Bipolar)
760(3)
10.26.4 Parallel Feedback (Bipolar)
763(1)
10.26.5 An FET Example
764(9)
10.26.6 Simulated Results
773(4)
10.26.7 Synthesizers
777(1)
10.26.8 Self-Oscillating Mixer
777(2)
10.27 Introduction
779(1)
10.28 Large Signal Noise Analysis
780(9)
10.29 Quantifying Phase Noise
789(2)
10.30 Summary
791(21)
References
791(4)
Bibliography
795(11)
Problems
806(6)
11 Frequency Synthesizer
812(47)
11.1 Introduction
812(2)
11.2 Building Block of Synthesizer
814(17)
11.2.1 Voltage Controlled Oscillator
814(1)
11.2.2 Reference Oscillator
814(1)
11.2.3 Frequency Divider
815(2)
11.2.4 Phase-Frequency Comparators
817(5)
11.2.5 Loop Filters -- Filters for Phase Detectors Providing Voltage Output
822(9)
11.3 Important Characteristics of Synthesizers
831(15)
11.3.1 Frequency Range
831(1)
11.3.2 Phase Noise
831(1)
11.3.3 Spurious Response
831(1)
11.3.4 Transient Behavior of Digital Loops Using Tri-State Phase Detectors
831(15)
11.4 Practical Circuits
846(1)
11.5 The Fractional-N Principle
846(3)
11.6 Spur-Suppression Techniques
849(2)
11.7 Digital Direct Frequency Synthesizer
851(8)
11.7.1 DDS Advantages
856(1)
References
857(2)
12 Microwave Mixer Design
859(148)
12.1 Introduction
859(7)
12.2 Diode Mixer Theory
866(14)
12.3 Single-Diode Mixers
880(10)
12.4 Single-Balanced Mixers
890(16)
12.5 Double-Balanced Mixers
906(25)
12.6 Fet Mixer Theory
931(24)
12.7 Balanced Fet Mixers
955(11)
12.8 Resistive (Reflective) Fet Mixers
966(12)
12.8.1 Switched Mode "ON" and "OFF" Resistance
968(3)
12.8.2 Loss Limit of Reflection FETs Device
971(1)
12.8.3 Conversion Loss
972(1)
12.8.4 Gain Compression and Intercept Point
973(1)
12.8.5 Design and Performance Optimization Techniques
974(4)
12.9 Special Mixer Circuits
978(10)
12.10 Mixer Noise
988(19)
12.10.1 Mixer Noise Analysis (MOSFET)
989(6)
12.10.2 Noise in Resistive GaAs HEMT Mixers
995(6)
References
1001(2)
Bibliography
1003(2)
Problems
1005(2)
13 RF Switches and Attenuators
1007(22)
13.1 PIN Diodes
1007(3)
13.2 PIN Diode Switches
1010(8)
13.3 PIN Diode Attenuators
1018(6)
13.4 FET Switches
1024(5)
References
1027(1)
Bibliography
1028(1)
14 Simulation of Microwave Circuits
1029(76)
14.1 Introduction
1029(2)
14.2 Design Types
1031(2)
14.2.1 Printed Circuit Board
1031(1)
14.2.2 Monolithic Microwave Integrated Circuits
1032(1)
14.3 Design Entry
1033(2)
14.3.1 Schematic Capture
1033(1)
14.3.2 Board and MMIC Layout
1034(1)
14.4 Linear Circuit Simulation
1035(5)
14.4.1 Small-Signal AC and S-parameter Simulation
1035(4)
14.4.2 Example: Microwave Filter, Schematic Based
1039(1)
14.5 Nonlinear Simulation
1040(22)
14.5.1 Newton's Method
1040(1)
14.5.2 Transistor Modeling
1040(1)
14.5.3 Transient Simulation
1041(3)
14.5.4 Example: Transient
1044(1)
14.5.5 Harmonic Balance Simulation
1045(5)
14.5.6 Example: Harmonic Balance, One-tone Amplifier
1050(1)
14.5.7 Example: Harmonic Balance, Two-tone Amplifier
1051(1)
14.5.8 Envelope Simulation
1052(4)
14.5.9 Example: Envelope, Modulated Amplifier
1056(1)
14.5.10 Mixing Circuit and Thermal Simulation
1057(2)
14.5.11 Example: Electrothermal
1059(3)
14.6 Electromagnetic Simulation
1062(5)
14.6.1 Method of Moments
1063(1)
14.6.2 Finite Element Method
1064(1)
14.6.3 Finite Difference Time Domain
1064(1)
14.6.4 Performing an EM Simulation
1065(1)
14.6.5 Example: Microwave Filter, EM Based
1066(1)
14.7 Design for Manufacturing
1067(12)
14.7.1 Circuit Optimization
1067(2)
14.7.2 Example: Optimization
1069(1)
14.7.3 Component Variation
1069(5)
14.7.4 Monte Carlo Analysis
1074(1)
14.7.5 Example: Monte Carlo Analysis
1075(3)
14.7.6 Yield Analysis and Yield Optimization
1078(1)
14.8 Oscillator Design and Simulation Example
1079(23)
14.8.1 Written by Ludwig Eichinger, Keysight Technologies
1079(1)
14.8.2 STW Delay Line
1079(1)
14.8.3 Behavioral Simulation
1080(1)
14.8.4 Choosing an Amplifier
1081(3)
14.8.5 DC Feed Design
1084(1)
14.8.6 Wilkinson Divider Design
1085(1)
14.8.7 Matching and Linear Oscillator Analysis
1085(1)
14.8.8 Optimization of Loop Gain and Phase
1086(3)
14.8.9 Nonlinear Oscillator Analysis
1089(1)
14.8.10 1/f Noise Characterization
1090(6)
14.8.11 Phase Noise Simulation
1096(3)
14.8.12 Oscillator Start-up Time
1099(1)
14.8.13 Layout EM Cosimulation
1099(3)
14.8.14 Oscillator Design Summary
1102(1)
14.9 Conclusion
1102(3)
References
1102(3)
Appendix A Derivations For Unilateral Gain Section 1105(3)
Appendix B Vector Representation Of Two-Tone Intermodulation Products 1108(19)
Appendix C Passive Microwave Elements 1127(21)
Index 1148
George D. Vendelin is Adjunct Professor at Stanford, Santa Clara, and San Jose State Universities, as well as UC-Berkeley-Extension. He is a Fellow of the IEEE and has over 40 years of microwave engineering design and teaching experience.

Anthony M. Pavio, PhD, is Manager of the Phoenix Design Center for Rockwell Collins. He is a Fellow of the IEEE and was previously Manager at the Integrated RF Ceramics Center for Motorola Labs.

Ulrich L. Rohde is a Professor of Technical Informatics, University of the Joint Armed Forces, in Munich, Germany; a member of the staff of other universities world-wide; partner of Rohde & Schwarz, Munich; and Chairman of the Board of Synergy Microwave Corporation. He is the author of two editions of Microwave and Wireless Synthesizers: Theory and Design.

Dr.-Ing. Matthias Rudolph is Ulrich L. Rohde Professor for RF and Microwave Techniques at Brandenburg University of Technology in Cottbus, Germany and heads the low-noise components lab at the Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik in Berlin.