Muutke küpsiste eelistusi

E-raamat: Microwave Engineering: Concepts and Fundamentals

(Aligarh Muslim University, India)
  • Formaat: 800 pages
  • Ilmumisaeg: 22-May-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466591424
  • Formaat - PDF+DRM
  • Hind: 76,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 800 pages
  • Ilmumisaeg: 22-May-2014
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466591424

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topicsincluding microwave generation, measurement, and processingequal emphasis. Packed with illustrations to aid in comprehension, the book:











Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits Addresses scattering parameters and their properties, as well as planar structures including striplines and microstrips Considers the limitations of conventional tubes, behavior of charged particles in different fields, and the concept of velocity modulation

Based on the authors own class notes, Microwave Engineering: Concepts and Fundamentals consists of 16 chapters featuring homework problems, references, and numerical examples. PowerPoint® slides and MATLAB®-based solutions are available with qualifying course adoption.

Arvustused

"The book demonstrates a good understanding of the authors knowledge of microwave engineering. It has extensive practical applications and a wide variety of problems with worked solutions. The book is written in such a way that the reader, through personal study, could achieve a satisfactory education in the subject of microwave engineering." Brian Klaveness, Principal Lecturer and Programme Leader at Glyndwr University, Wrexham, UK

"... covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, giving all topics equal emphasis and providing a comprehensive understanding of the underlying principles at the core of microwave engineering. In my opinion, the book is well written and easy to follow, so I am highly recommending it as a textbook for electronics and communication engineering students at the undergraduate level, though it may serve as a solid basis for advanced courses on microwaves at the postgraduate level as well." Ivica Manic´, University of Ni, Serbia, from Microelectronics Reliability, February 2015

Preface xxvii
Author xxix
1 Introduction 1(16)
1.1 Introduction
1(1)
1.2 Microwave Frequency Bands
2(1)
1.3 Advantages
3(2)
1.4 Components of Microwave System
5(4)
1.4.1 Microwave Generation
5(1)
1.4.2 Microwave Processing
6(1)
1.4.3 Microwave Transmission
6(2)
1.4.4 Microwave Measurements
8(1)
1.4.5 Microwave Antennas
9(1)
1.5 Applications
9(4)
1.5.1 Communication
9(2)
1.5.2 Radars
11(1)
1.5.3 Radio Astronomy
11(1)
1.5.4 Navigation
12(1)
1.5.5 Home Appliances
12(1)
1.5.6 Industrial Heating
13(1)
1.5.7 Plasma Generation
13(1)
1.5.8 Weaponry System
13(1)
1.5.9 Spectroscopy
13(1)
1.6 Health Hazards
13(1)
Descriptive Questions
14(1)
Further Reading
14(3)
2 Fundamentals of Wave Propagation 17(70)
2.1 Introduction
17(1)
2.2 Basic Equations and Parameters
17(2)
2.3 Nature of Media
19(1)
2.4 Wave in Lossless Media
19(2)
2.5 Wave in Lossy Media
21(1)
2.6 Conductors and Dielectrics
22(2)
2.7 Polarisation
24(2)
2.8 Depth of Penetration
26(1)
2.9 Surface Impedance
27(1)
2.10 Poynting Theorem
27(2)
2.11 Reflection and Refraction
29(2)
2.12 Direction Cosines, Wavelength and Phase Velocity
31(1)
2.13 Classification of the Cases of Reflection
32(1)
2.14 Normal Incidence Cases
33(3)
2.14.1 Perfect Conductor
34(1)
2.14.2 Perfect Dielectric
35(1)
2.15 Oblique Incidence
36(4)
2.15.1 Perfect Conductor
36(1)
2.15.1.1 Perpendicular (or Horizontal) Polarisation
36(1)
2.15.1.2 Parallel (or Vertical) Polarisation
36(1)
2.15.2 Perfect Dielectric
37(5)
2.15.2.1 Perpendicular (Horizontal) Polarisation
39(1)
2.15.2.2 Parallel (Vertical) Polarisation
39(1)
2.15.2.3 Brewster's Angle
39(1)
2.15.2.4 Total Internal Reflection
40(1)
2.16 Parallel Plane Guide
40(2)
2.17 Transverse Waves
42(3)
2.17.1 Transverse Electric Waves
42(2)
2.17.2 Transverse Magnetic Waves
44(1)
2.18 Characteristics of TE and TM Waves
45(2)
2.19 Transverse Electromagnetic Waves
47(1)
2.20 Wave Impedances
48(3)
2.21 Attenuation in the Walls of Parallel Plane Guide
51(2)
2.22 Transmission Lines
53(1)
2.23 Equations Governing Transmission Line Behaviour
54(4)
2.23.1 Transmission Line Equations
54(2)
2.23.2 Solution of Transmission Line Equations
56(10)
2.23.2.1 Exponential Form
56(1)
2.23.2.2 Hyperbolic Form
57(1)
2.24 Lossless RF and UHF Lines with Different Terminations
58(3)
2.25 Reflection Phenomena
61(1)
2.26 Resonance Phenomena in Line Sections
62(1)
2.27 Quality Factor of a Resonant Section
63(1)
2.28 UHF Lines as Circuit Elements
63(3)
2.29 Applications of Transmission Lines
66(4)
2.29.1 Quarter-Wave Section as Tuned Line
66(1)
2.29.2 Quarter-Wave Section as Impedance Transformer
67(1)
2.29.3 Quarter-Wave Section as Voltage Transformer
67(1)
2.29.4 Line Sections as Harmonic Suppressors
68(1)
2.29.4.1 Suppression of Third Harmonics
68(1)
2.29.4.2 Suppression of Even Harmonics
69(1)
2.29.5 Line Sections for Stub Matching
69(18)
2.29.5.1 Single Stub Matching
69(1)
2.29.5.2 Double Stub Matching
70(1)
2.30 Types of Transmission Lines
70(1)
2.31 Coaxial Cables
71(2)
2.32 Limitations of Different Guiding Structures
73(11)
Problems
84(1)
Descriptive Questions
85(1)
Further Reading
86(1)
3 Waveguides 87(52)
3.1 Introduction
87(1)
3.2 Interrelation between Transmission Line and Waveguide
87(3)
3.2.1 Impact of Frequency Change
89(1)
3.3 Rectangular Waveguide
90(19)
3.3.1 Transverse Magnetic Wave
93(3)
3.3.2 Transverse Electric Wave
96(1)
3.3.3 Behaviour of Waves with Frequency Variation
96(1)
3.3.4 Possible and Impossible Modes
97(1)
3.3.4.1 Lowest Possible TM Mode
97(1)
3.3.4.2 Lowest Possible TE Mode
97(1)
3.3.4.3 Impossibility of TEM Wave
97(1)
3.3.5 Field Distribution for Different Modes
98(2)
3.3.5.1 TE Wave
98(1)
3.3.5.2 TM Wave
99(1)
3.3.6 Excitation of Modes
100(1)
3.3.6.1 TE Modes
100(1)
3.3.6.2 TM Modes
100(1)
3.3.7 Wave Impedances
101(2)
3.3.7.1 TM Wave
101(1)
3.3.7.2 TE Wave
101(1)
3.3.7.3 Variation of Zz, upsilon and λ with Frequency
102(1)
3.3.8 Circuit Equivalence of Waveguides
103(3)
3.3.8.1 TM Wave
103(2)
3.3.8.2 TE Wave
105(1)
3.3.9 Power Transmission in Rectangular Waveguide
106(1)
3.3.10 Attenuation in Waveguides
107(1)
3.3.11 Quality Factor
108(1)
3.4 Circular Waveguide
109(10)
3.4.1 TM Waves
111(1)
3.4.2 TE Waves
112(1)
3.4.3 Solution of Wave Equation
112(4)
3.4.3.1 Field Expressions for TM Wave
114(1)
3.4.3.2 Field Expressions for TE Wave
115(1)
3.4.4 TEM Modes in Circular Waveguide
116(1)
3.4.5 Mode Designation in Circular Waveguide
117(1)
3.4.6 Field Distribution in Circular Waveguide
118(1)
3.4.7 Mode Excitation
119(1)
3.4.8 Cutoff Frequencies
119(1)
3.4.9 Attenuation in Circular Waveguides
119(1)
3.5 Dielectric Waveguides
119(5)
3.5.1 Dielectric Slab Waveguide
120(3)
3.5.2 Dielectric Rod Waveguide
123(1)
3.6 Physical Interpretation of Wave Terminology
124(5)
3.6.1 Modes
124(1)
3.6.2 Mode Designations
124(1)
3.6.3 Dominant Mode
124(1)
3.6.4 Cutoff Frequency
125(1)
3.6.5 Usable Frequency Range
125(1)
3.6.6 Characteristic Impedance
125(1)
3.6.7 Guide Wavelength
125(1)
3.6.8 Phase Velocity
125(1)
3.6.9 Group Velocity
125(1)
3.6.10 Transformation of Modes
126(1)
3.6.11 Mode Disturbance
126(1)
3.6.12 Multimode Propagation
126(1)
3.6.13 Group Velocity Variations
127(1)
3.6.14 Wavefront Movement
128(1)
3.6.15 Spurious Modes
128(1)
3.7 Relative Merits of Waveguides
129(1)
3.7.1 Copper Losses
129(1)
3.7.2 Dielectric Loss
129(1)
3.7.3 Insulation Breakdown
129(1)
3.7.4 Power-Handling Capability
130(1)
3.7.5 Radiation Losses
130(1)
3.8 Limitations of Waveguides
130(5)
Problems
135(1)
Descriptive Questions
136(1)
Further Reading
137(2)
4 Cavity Resonators 139(24)
4.1 Introduction
139(1)
4.2 Shapes and Types of Cavities
140(4)
4.2.1 Cavity Shapes
140(1)
4.2.2 Cavity Types
140(2)
4.2.3 Reentrant Cavities
142(1)
4.2.3.1 Resonant Frequency
143(1)
4.3 Cavity Formation
144(1)
4.3.1 Formation of a Rectangular Cavity
144(1)
4.3.2 Formation of a Cylindrical Cavity
145(1)
4.4 Fields in Cavity Resonators
145(5)
4.4.1 Rectangular Cavity Resonator
146(2)
4.4.1.1 Mode Degeneracy
148(1)
4.4.2 Circular Cavity Resonator
148(2)
4.4.3 Semi-Circular Cavity Resonator
150(1)
4.5 Quality Factor
150(4)
4.6 Coupling Mechanism
154(1)
4.7 Tuning Methods
154(1)
4.8 Advantages and Applications
155(1)
4.9 Dielectric Resonators
156(4)
Problems
160(1)
Descriptive Questions
160(1)
Further Reading
161(2)
5 Microwave Ferrite Devices 163(22)
5.1 Introduction
163(2)
5.2 Ferrites
165(2)
5.3 Faraday's Rotation
167(1)
5.4 Non-Reciprocal Ferrite Devices
168(10)
5.4.1 Gyrators
169(1)
5.4.1.1 Gyrator with Input-Output Ports Rotated by 90°
169(1)
5.4.1.2 Gyrator with 90° Twist
170(1)
5.4.2 Isolators
170(3)
5.4.2.1 Faraday's Rotation Isolators
171(1)
5.4.2.2 Resonance Isolator
172(1)
5.4.3 Circulators
173(24)
5.4.3.1 Three-Port Circulators
173(2)
5.4.3.2 Four-Port Circulators
175(3)
5.5 Ferrite Phase Shifter
178(1)
5.6 Ferrite Attenuators
178(1)
5.7 Ferrite Switches
179(1)
5.8 YIG Filters
179(1)
5.9 Figures of Merit of Ferrite Devices
180(2)
Problems
182(1)
Descriptive Questions
182(1)
Further Reading
183(2)
6 Smith Chart 185(46)
6.1 Introduction
185(1)
6.2 Characteristic Parameters of a Uniform Transmission Line
185(4)
6.3 Polar Chart
189(2)
6.4 Smith Chart for Impedance Mapping
191(4)
6.5 Smith Chart for Admittance Mapping
195(2)
6.6 Information Imparted by Smith Chart
197(6)
6.6.1 Mapping of Normalised Impedances
197(1)
6.6.2 Rotation by 180°
198(1)
6.6.3 Reflection and Transmission Coefficients
198(2)
6.6.4 Voltage Standing Wave Ratio
200(1)
6.6.5 Two Half-Wave Peripheral Scales
200(2)
6.6.6 Inversion of Impedance/Admittance
202(1)
6.6.7 Equivalence of Movement on Transmission Line
202(1)
6.7 Advantages of Smith Chart
203(1)
6.8 Smith Chart for Lossless Transmission Lines
204(10)
6.8.1 Evaluation of Γ(d) for given Z(d) and Zo
204(1)
6.8.2 Evaluation of Γ(d) and Z(d) for Given ZR, Zo and d
205(1)
6.8.3 Evaluation of dmax and dmin for Given ZR and Zo
206(1)
6.8.4 Evaluation of VSWR for Given ΓR and ZR1, ZR2 and Zo
207(1)
6.8.5 Evaluation of Y(d) for Given ZR
208(2)
6.8.6 Mapping of a Multi-Element Circuit onto a Smith Chart
210(2)
6.8.7 Evaluation of Normalised Impedances
212(1)
6.8.8 Consideration of Attenuation Factor
213(1)
6.9 Stub Matching
214(14)
6.9.1 Entry on Smith Chart
215(1)
6.9.2 Susceptance Variation of SC Stubs over a Frequency Band
215(1)
6.9.3 Stub for Changing the Phase of a Main-Line Signal
215(1)
6.9.4 Requirements for Proper Matching
216(1)
6.9.5 Selection of Appropriate Type and Length of Stub
217(1)
6.9.6 Impact of Rotation of Impedance
217(2)
6.9.7 Implementation of Single Stub Matching
219(1)
6.9.8 Implementation of Double Stub Matching
220(2)
6.9.9 Conjugate Matching Problems with Distributed Components
222(6)
Problems
228(1)
Descriptive Questions
229(1)
Further Reading
229(2)
7 Microwave Components 231(48)
7.1 Introduction
231(1)
7.2 Waveguides and Its Accessories
232(8)
7.2.1 Waveguide Shapes
232(1)
7.2.2 Ridged Waveguides
233(1)
7.2.3 Dielectric Loaded Waveguides
233(1)
7.2.4 Bifurcated and Trifurcated Waveguides
234(1)
7.2.5 Flexible Waveguide
234(1)
7.2.6 Impact of Dimensional Change
234(1)
7.2.7 Waveguide Joints
235(2)
7.2.7.1 Waveguide Flanges
235(1)
7.2.7.2 Waveguide Rotary Joints
236(1)
7.2.8 Waveguide Stands
237(1)
7.2.9 Waveguide Bends
237(1)
7.2.9.1 E-Plane Bend
238(1)
7.2.9.2 H-Plane Bend
238(1)
7.2.10 Waveguide Corners
238(1)
7.2.10.1 E-Plane Corner
239(1)
7.2.10.2 H-Plane Corner
239(1)
7.2.11 Waveguide Twists
239(1)
7.2.12 Waveguide Transitions
240(1)
7.3 Input-Output Methods in Waveguides
240(3)
7.3.1 Probe Coupling
241(1)
7.3.2 Loop Coupling
242(1)
7.3.3 Slot/Aperture Coupling
243(1)
7.3.4 Input-Output Coupling in Circular Waveguides
243(1)
7.4 Coaxial to Waveguide Adapter
243(2)
7.5 Waveguide Junctions
245(4)
7.5.1 E-Plane Tee
245(1)
7.5.2 H-Plane Tee
246(1)
7.5.3 EH (or Magic) Tee
246(2)
7.5.3.1 Impedance Matching in Magic Tee
247(1)
7.5.4 Hybrid Ring (Rat Race Tee)
248(1)
7.6 Directional Couplers
249(7)
7.6.1 Bathe-Hole Coupler
250(1)
7.6.2 Double-Hole Coupler
251(1)
7.6.3 Moreno Cross-Guide Coupler
251(1)
7.6.4 Schwinger Reversed-Phase Coupler
251(1)
7.6.5 Multi-Hole Directional Coupler
252(1)
7.6.6 Unidirectional and Bidirectional Couplers
252(1)
7.6.7 Short Slot, Top Wall and Branch Guide Couplers
252(1)
7.6.8 Figures of Merit
253(3)
7.7 Waveguide Terminations
256(3)
7.7.1 Fixed Matched Termination (or Matched Load)
257(1)
7.7.2 Adjustable Terminations or Moving Loads
258(1)
7.7.3 Water Loads
258(1)
7.8 Attenuators
259(2)
7.8.1 Fixed Attenuator
259(1)
7.8.2 Variable Attenuators
260(1)
7.9 Impedance Matching
261(3)
7.9.1 Inductive Irises
261(1)
7.9.2 Capacitive Irises
262(1)
7.9.3 Resonant Windows
262(1)
7.9.4 Posts and Screws
263(1)
7.10 Tuners
264(3)
7.10.1 EH Tuner
264(1)
7.10.2 Slide Screw Tuner
265(1)
7.10.3 Coaxial Line Stubs and Line Stretchers
265(1)
7.10.4 Waveguide Slug Tuner
266(1)
7.11 Phase Shifters
267(2)
7.11.1 Line Stretcher Phase Shifter
267(1)
7.11.2 Dielectric Vane Phase Shifter
268(1)
7.11.3 Linear Phase Shifter
268(1)
7.11.4 Circular Waveguide Phase Shifter
268(1)
7.12 Microwave Filters
269(1)
7.12.1 Band-Pass Filter
269(1)
7.12.2 Low-Pass Filter
269(1)
7.12.3 High-Pass Filter
270(1)
7.12.4 Parallel Resonant Filter
270(1)
7.13 Duplexers
270(1)
7.14 Diplexers
271(1)
7.15 Mode Suppressors
271(4)
Problems
275(1)
Descriptive Questions
276(1)
Further Reading
277(2)
8 Scattering Parameters 279(38)
8.1 Introduction
279(2)
8.2 Properties of Scattering Matrices
281(1)
8.2.1 Order and Nature
281(1)
8.2.2 Symmetry Property
281(1)
8.2.3 Unity Property
281(1)
8.2.4 Zero Property
281(1)
8.2.5 Phase Shift Property
282(1)
8.3 Scattering Parameters for Networks with Different Ports
282(5)
8.3.1 1-Port Network
282(1)
8.3.2 2-Port Network
282(3)
8.3.3 3-Port Network
285(1)
8.3.4 N-Port Network
286(1)
8.3.5 Cascaded Networks
286(1)
8.4 Nature of Networks
287(1)
8.4.1 Lossless Network
287(1)
8.4.2 Lossy Network
287(1)
8.5 Types of s-Parameters
287(1)
8.5.1 Small-Signal s-Parameters
287(1)
8.5.2 Large-Signal s-Parameters
287(1)
8.5.3 Mixed-Mode s-Parameters
288(1)
8.5.4 Pulsed s-Parameters
288(1)
8.6 Scattering Matrices for Some Commonly Used Microwave Components
288(17)
8.6.1 H-Plane Tee
288(4)
8.6.2 E-Plane Tee
292(3)
8.6.3 EH Tee
295(3)
8.6.4 Directional Coupler
298(3)
8.6.5 Hybrid Ring
301(1)
8.6.6 Circulators
301(2)
8.6.6.1 4-Port Circulator
302(1)
8.6.6.2 3-Port Circulator
302(1)
8.6.7 Attenuator
303(1)
8.6.8 Gyrator
304(1)
8.6.9 Isolator
304(1)
8.7 Electrical Properties of 2-Port Networks
305(2)
8.7.1 Complex Linear Gain
305(1)
8.7.2 Scalar Linear Gain
305(1)
8.7.3 Scalar Logarithmic Gain
305(1)
8.7.4 Insertion Loss
306(1)
8.7.5 Return Loss
306(1)
8.7.5.1 Input Return Loss
306(1)
8.7.5.2 Output Return Loss
306(1)
8.7.6 Reverse Gain and Reverse Isolation
306(1)
8.7.7 Voltage Reflection Coefficient
307(1)
8.7.8 Voltage Standing Wave Ratio
307(1)
8.8 s-Parameters and Smith Chart
307(4)
8.9 Scattering Transfer (or T) Parameters
311(3)
8.9.1 Conversion from S-Parameters to T-Parameters
312(1)
8.9.2 Conversion from T-Parameters to S-Parameters
312(2)
Problems
314(1)
Descriptive Questions
314(1)
Further Reading
315(2)
9 Microwave Antennas 317(26)
9.1 Introduction
317(1)
9.2 Antenna Theorems and Characteristic Parameters
317(2)
9.2.1 Antenna Theorems
317(1)
9.2.2 Antenna Characteristic Parameters
318(1)
9.3 Types of Microwave Antennas
319(14)
9.3.1 Reflector Antennas
319(6)
9.3.1.1 Paraboloidal Reflector
321(1)
9.3.1.2 Truncated Paraboloid
321(1)
9.3.1.3 Orange-Peel Paraboloid
322(1)
9.3.1.4 Cylindrical Paraboloid
322(1)
9.3.1.5 Pillbox
322(1)
9.3.1.6 Cheese Antenna
322(1)
9.3.1.7 Spherical Reflector
323(1)
9.3.1.8 Cassegrain Antenna
323(1)
9.3.1.9 Corner Reflectors
324(1)
9.3.2 Horn Antennas
325(1)
9.3.3 Slot Antennas
326(1)
9.3.4 Lens Antennas
327(6)
9.3.4.1 WG-Type Lens
331(1)
9.3.4.2 Delay Lenses
331(1)
9.3.4.3 Zoned Lens
332(1)
9.3.4.4 Loaded Lens
333(1)
9.3.5 Frequency-Sensitive Antennas
333(1)
9.4 Antenna Arrays
333(4)
9.4.1 Types of Arrays
334(3)
9.4.1.1 Broadside Array
335(1)
9.4.1.2 End-Fire Array
336(1)
9.4.1.3 Collinear Array
336(1)
9.4.1.4 Parasitic Arrays
336(1)
9.5 Microstrip Antennas
337(3)
9.5.1 Feed Methods
338(1)
9.5.2 Characteristics of MSAs
339(1)
9.5.3 Merits of MSAs
340(1)
9.5.4 Demerits of MSAs
340(1)
9.5.5 Applications
340(1)
Descriptive Questions
340(1)
Further Reading
341(2)
10 Microwave Measurements 343(38)
10.1 Introduction
343(1)
10.2 Klystron Power Supply
344(3)
10.2.1 Operating Procedure
345(1)
10.2.2 Reflex Klystron
346(1)
10.2.3 Klystron Mount
346(1)
10.3 VSWR Meter
347(1)
10.4 Travelling Wave Detection
348(1)
10.4.1 Slotted Section
348(7)
10.4.2 Tunable Probes
349(1)
10.4.3 Movable Shorts
350(1)
10.4.4 Frequency (or Wave) Meters
350(2)
10.4.5 Microwave Detectors
352(1)
10.4.6 Tunable Crystal Detector Mounts
353(1)
10.4.7 Bolometer
353(6)
10.4.7.1 Barraters
354(1)
10.4.7.2 Thermistor
355(1)
10.4.7.3 Bolometer Mounts
355(1)
10.5 Qualities of Microwave Components and Devices
355(1)
10.6 Precautions
356(2)
10.7 Some Standard Norms
358(1)
10.8 Measurement of Basic Quantities
359(16)
10.8.1 Measurement of Wavelength
359(1)
10.8.2 Measurement of Frequency
360(1)
10.8.2.1 Transmission Method
360(1)
10.8.2.2 Reaction Method
360(1)
10.8.3 Measurement of VSWR
361(1)
10.8.3.1 Transmission Line Method
361(1)
10.8.3.2 Twice Minimum Method
361(1)
10.8.3.3 Reflectometre Method
362(1)
10.8.4 Measurement of Phase Shift
362(2)
10.8.4.1 Method I
363(1)
10.8.4.2 Method II
363(1)
10.8.5 Measurement of Quality Factor
364(1)
10.8.6 Measurement of Scattering Parameters
365(1)
10.8.7 Measurement of Insertion Loss/Attenuation
365(4)
10.8.7.1 Insertion or Power Ratio Method
366(1)
10.8.7.2 Substitution Methods
367(1)
10.8.7.3 Cavity Resonance Method
368(1)
10.8.7.4 Scattering Coefficient Method
369(1)
10.8.8 Measurement of Dielectric Constant
369(1)
10.8.9 Measurement of Impedance
370(1)
10.8.9.1 Bridge Method
370(1)
10.8.9.2 Slotted Line Method
370(1)
10.8.10 Measurement of Power
371(2)
10.8.10.1 Bolometer Bridge Method
371(1)
10.8.10.2 Calorimetric Method
372(1)
10.8.11 Measurement of Electric Field Intensity
373(1)
10.8.12 Measurement of Reflection Coefficient
374(1)
10.8.12.1 Comparison Method
374(1)
10.8.13 Measurement of Transmission Coefficient
375(1)
10.8.13.1 Comparison Method
375(1)
10.9 Some Practical Applications
375(4)
10.9.1 Measurement of Gain of an Aerial Horn
375(1)
10.9.2 E and H Plane Radiation Patterns
376(1)
10.9.3 Measurement of Thickness of a Metallic Sheet
376(1)
10.9.4 Measurement of Thickness of a Dielectric Sheet
377(1)
10.9.5 Measurement of Wire Diameter
377(1)
10.9.6 Measurement of Moisture Content
377(1)
10.9.7 Measurement/Monitoring Moisture Content in Liquids
378(1)
Descriptive Questions
379(1)
Further Reading
379(2)
11 Basics of Microwave Tubes 381(30)
11.1 Introduction
381(1)
11.2 Frequency Limitations of Conventional Tubes
381(7)
11.2.1 Inter-Electrode Capacitances
382(1)
11.2.2 Lead Inductances
383(3)
11.2.2.1 Impact of Lead Inductance and Inter-Electrode Capacitance
383(2)
11.2.2.2 Gain: BW Product Limitation
385(1)
11.2.3 Transit Time Effect
386(1)
11.2.4 Skin Effect
387(1)
11.2.5 Electrostatic Induction
387(1)
11.2.6 Dielectric Loss
388(1)
11.3 Influence of Fields on Motion of Charged Particles
388(15)
11.3.1 Motion in Electric Field
390(3)
11.3.1.1 Cartesian Coordinate System
390(1)
11.3.1.2 Cylindrical Coordinate System
391(2)
11.3.2 Motion in Magnetic Field
393(4)
11.3.2.1 Cartesian Coordinate System
393(2)
11.3.2.2 Cylindrical Coordinate System
395(2)
11.3.3 Motion in Combined Electric and Magnetic Field
397(1)
11.3.4 Motion in Electric, Magnetic and an AC Field
398(5)
11.3.4.1 Cartesian Coordinates
398(4)
11.3.4.2 Cylindrical Coordinates
402(1)
11.4 Velocity Modulation
403(3)
11.4.1 Influence of Electric Field on Electrons
403(1)
11.4.2 Operation of Velocity-Modulated Tubes
404(2)
11.4.2.1 Bunching Process
405(1)
11.4.2.2 Current Modulation
405(1)
11.4.2.3 Energy Extraction
406(1)
11.5 Classification of Microwave Tubes
406(3)
11.5.1 Linear Beam (or 0-Type) Tubes
407(1)
11.5.2 Crossed-Field (or M-Type) Tubes
407(4)
11.5.2.1 Tubes Using Resonant Cavities
408(1)
11.5.2.2 Tubes with Non-Resonant Cavities
409(1)
Descriptive Questions
409(1)
Further Reading
410(1)
12 Microwave Tubes 411(92)
12.1 Introduction
411(1)
12.2 Klystron
411(1)
12.2.1 Types of Klystron
411(1)
12.2.1.1 Reflex Klystron
411(1)
12.2.1.2 Two-Cavity Klystron
412(1)
12.2.1.3 Multi-Cavity Klystron
412(1)
12.2.1.4 Extended Interaction Klystron
412(1)
12.3 Two-Cavity Klystron
412(14)
12.3.1 Constructional Features
413(1)
12.3.2 Operation
414(1)
12.3.3 Mathematical Analysis
415(9)
12.3.3.1 Velocity Modulation
415(2)
12.3.3.2 Process of Bunching
417(7)
12.3.4 Multi-Cavity Klystron Amplifiers
424(1)
12.3.5 Tuning
425(1)
12.3.5.1 Synchronous Tuning
425(1)
12.3.5.2 Staggered Tuning
426(1)
12.3.6 Two-Cavity Klystron Oscillator
426(1)
12.3.7 Performance
426(1)
12.3.8 Applications
426(1)
12.4 Reflex Klystron
426(14)
12.4.1 Constructional Features
427(1)
12.4.2 Power Sources Required
428(1)
12.4.3 Velocity Modulation
428(3)
12.4.4 Process of Bunching
431(5)
12.4.4.1 Current Modulation
433(1)
12.4.4.2 Round-Trip Transit Angle
433(1)
12.4.4.3 Beam Current
433(1)
12.4.4.4 Power Output and Efficiency
434(1)
12.4.4.5 Electronic Admittance
435(1)
12.4.4.6 Equivalent Circuit
435(1)
12.4.5 Modes of Operation
436(2)
12.4.6 Debunching
438(1)
12.4.7 Tuning
439(1)
12.4.8 Applications
439(1)
12.5 Travelling-Wave Tube
440(20)
12.5.1 Simplified Model of TWT
441(1)
12.5.2 Slow Wave Structures
441(4)
12.5.2.1 Helical Structure
441(3)
12.5.2.2 Coupled-Cavity Structure
444(1)
12.5.2.3 Ring-Loop Structure
444(1)
12.5.2.4 Ring-Bar Structure
445(1)
12.5.3 Construction
445(1)
12.5.4 Focussing
446(2)
12.5.5 Input-Output Arrangements
448(1)
12.5.6 Basic Operating Principle
448(1)
12.5.7 Power Supply
449(1)
12.5.8 Mathematical Analysis
450(8)
12.5.8.1 Brillouin Diagram
451(3)
12.5.8.2 Amplification Process
454(2)
12.5.8.3 Convection Current
456(1)
12.5.8.4 Axial Electric Field
457(1)
12.5.8.5 Wave Modes
457(1)
12.5.8.6 Output Power Gain
458(1)
12.5.9 Characteristics
458(1)
12.5.10 Prevention of Oscillations
459(1)
12.5.11 Applications
459(1)
12.6 Magnetron
460(25)
12.6.1 Construction of Conventional Cylindrical Magnetron
460(1)
12.6.2 Working Mechanism
461(5)
12.6.2.1 Effect of Electric Field
461(1)
12.6.2.2 Effect of Magnetic Field
461(1)
12.6.2.3 Effect of Combined Field
462(1)
12.6.2.4 RF Field
463(1)
12.6.2.5 Effect of Combined (E, B and RF) Fields
464(2)
12.6.3 Modes of Oscillation
466(1)
12.6.4 Strapping
467(2)
12.6.5 Frequency Pushing and Pulling
469(1)
12.6.6 Coupling Methods
469(1)
12.6.7 Magnetron Tuning
469(2)
12.6.7.1 Inductive Tuning
470(1)
12.6.7.2 Capacitive Tuning
470(1)
12.6.8 Mathematical Analysis
471(5)
12.6.8.1 Electron Motion
471(1)
12.6.8.2 Hull Cutoff Equations
472(1)
12.6.8.3 Cyclotron Angular Frequency
473(1)
12.6.8.4 Equivalent Circuit
474(1)
12.6.8.5 Quality Factor
475(1)
12.6.8.6 Power and Efficiency
475(1)
12.6.9 Other Magnetrons
476(8)
12.6.9.1 Linear Magnetron
476(1)
12.6.9.2 Coaxial Magnetron
477(1)
12.6.9.3 Inverted Coaxial Magnetron
478(1)
12.6.9.4 Voltage Tunable Magnetron
479(1)
12.6.9.5 Frequency-Agile Coaxial Magnetron
480(2)
12.6.9.6 Negative-Resistance or Split-Anode Magnetron
482(1)
12.6.9.7 Electron-Resonance Magnetron
483(1)
12.6.10 Performance Parameters and Applications
484(1)
12.6.11 Arcing
485(1)
12.6.11.1 Baking-In Procedure
485(1)
12.7 Crossed-Field Amplifier
485(2)
12.7.1 Forward-Wave Crossed-Field Amplifier
485(1)
12.7.2 Backward-Wave Crossed-Field Amplifier
486(1)
12.8 Backward-Wave Oscillators
487(11)
12.8.1 0-Type Backward-Wave Oscillator
488(1)
12.8.2 Backward-Wave M-Type Cross-Field Oscillator
489(1)
12.8.2.1 Linear M-Carcinotron Oscillator
489(1)
12.8.2.2 Circular M-Carcinotron Oscillator
489(1)
12.8.3 Applications and Performance Parameters
490(8)
Problems
498(1)
Descriptive Questions
499(1)
Further Reading
500(3)
13 Microwave Diodes 503(76)
13.1 Introduction
503(1)
13.2 Basics of Semiconductor Devices
503(3)
13.2.1 Properties of Semiconducting Materials
503(2)
13.2.2 Mechanism Involved
505(1)
13.2.3 Significance of Negative Resistance
505(1)
13.3 Conventional Diodes
506(3)
13.3.1 Low-Frequency Conventional Diodes
506(1)
13.3.1.1 PN Junction Diodes
506(1)
13.3.1.2 Zener Diode
507(1)
13.3.1.3 Avalanche Diode
507(1)
13.3.2 Characteristic Parameters of Conventional Diodes
507(1)
13.3.2.1 Forward Voltage Drop (V1)
507(1)
13.3.2.2 Peak Inverse Voltage
507(1)
13.3.2.3 Maximum Forward Current
507(1)
13.3.2.4 Leakage Current
508(1)
13.3.2.5 Junction Capacitance
508(1)
13.3.3 High-Frequency Limitations of Conventional Diodes
508(1)
13.3.4 Optical Frequency Diodes
508(1)
13.3.4.1 Light-Emitting Diodes
508(1)
13.3.4.2 Laser Diodes
508(1)
13.3.4.3 Photodiodes
509(1)
13.4 Microwave Diodes
509(14)
13.4.1 Point-Contact Diode
509(2)
13.4.1.1 Construction
509(1)
13.4.1.2 Operation
510(1)
13.4.2 Step-Recovery Diode
511(1)
13.4.2.1 Construction
511(1)
13.4.2.2 Operation
512(1)
13.4.2.3 Applications
512(1)
13.4.3 PIN Diode
512(3)
13.4.3.1 Construction
512(2)
13.4.3.2 Operation
514(1)
13.4.3.3 Advantages
515(1)
13.4.3.4 Applications
515(1)
13.4.4 Tunnel Diode
515(3)
13.4.4.1 Construction
515(1)
13.4.4.2 Operation
516(1)
13.4.4.3 V-I Characteristics
517(1)
13.4.4.4 Advantages
518(1)
13.4.4.5 Applications
518(1)
13.4.5 Schottky Diode
518(3)
13.4.5.1 Construction
519(1)
13.4.5.2 Fabrication
519(1)
13.4.5.3 Characteristics
520(1)
13.4.5.4 Advantages
520(1)
13.4.5.5 Limitations
520(1)
13.4.5.6 Applications
521(1)
13.4.6 Varactor or Varicap Diode
521(2)
13.4.6.1 Operation
521(1)
13.4.6.2 Characteristics
522(1)
13.4.6.3 Applications
523(1)
13.5 Transferred Electron Devices
523(19)
13.5.1 Valley Band Structure
524(7)
13.5.1.1 Conductivity and Current Density
526(2)
13.5.1.2 Ridley-Watkins-Helsum Theory
528(1)
13.5.1.3 Differential Negative Resistance
529(2)
13.5.2 High Field Domain
531(2)
13.5.2.1 Properties of High Field Domain
533(1)
13.5.3 Modes of Operation
533(2)
13.5.3.1 Gunn Diode Mode
534(1)
13.5.3.2 Stable Amplification Mode
534(1)
13.5.3.3 LSA Mode
534(1)
13.5.3.4 Bias-Circuit Oscillation Mode
534(1)
13.5.4 Criterion for Mode's Classification
535(2)
13.5.5 Gunn Diode
537(1)
13.5.5.1 Gunn Effect
537(1)
13.5.5.2 Current Fluctuations
538(1)
13.5.6 LSA Diode
538(2)
13.5.7 Indium Phosphide Diodes
540(1)
13.5.8 Cadmium Telluride Diodes
541(1)
13.5.9 Advantages
541(1)
13.5.10 Applications
541(1)
13.6 Avalanche Transit Time Devices
542(14)
13.6.1 Read Diodes
543(4)
13:6.1.1 Operation
543(3)
13.6.1.2 Output Power and Quality Factor
546(1)
13.6.2 IMPATT Diode
547(5)
13.6.2.1 Principle of Operation
547(1)
13.6.2.2 Construction
548(1)
13.6.2.3 Working
548(2)
13.6.2.4 Performance
550(1)
13.6.2.5 Advantages and Limitations
551(1)
13.6.2.6 Applications
552(1)
13.6.3 IRAPATT Diode
552(2)
13.6.3.1 Operation
552(1)
13.6.3.2 Performance
553(1)
13.6.3.3 Advantages and Limitations
553(1)
13.6.3.4 Applications
554(1)
13.6.4 BARITT Diode
554(2)
13.6.4.1 Structures
555(1)
13.6.4.2 Operation
555(1)
13.6.4.3 Advantages and Limitations
556(1)
13.6.4.4 Applications
556(1)
13.6.4.5 Comparison of Power Levels
556(1)
13.7 Parametric Devices
556(10)
13.7.1 Manley-Rowe Power Relations
558(3)
13.7.2 Classification of Parametric Devices
561(1)
13.7.3 Parametric Amplifiers
562(4)
13.7.3.1 Parametric Up Converter
563(1)
13.7.3.2 Parametric Down Converter
564(1)
13.7.3.3 Negative Resistance Parametric Amplifiers
564(1)
13.7.3.4 Degenerate Parametric Amplifiers or Oscillator
565(1)
13.7.4 Relative Merits
566(1)
13.8 Masers
566(8)
13.8.1 Principle of Operation
567(1)
13.8.2 Types of Masers
568(2)
13.8.2.1 Ammonia Maser
568(1)
13.8.2.2 Ruby Maser
568(1)
13.8.2.3 Hydrogen Maser
569(1)
13.8.3 Maser Applications
570(4)
Problems
574(1)
Descriptive Questions
575(1)
Further Reading
576(3)
14 Microwave Transistors 579(80)
14.1 Introduction
579(1)
14.2 Transistors and Vacuum Tubes
579(2)
14.2.1 Conventional Transistor
579(1)
14.2.2 Limitations of Conventional Transistors
580(1)
14.3 Microwave Transistors
581(14)
14.3.1 Bipolar Junction Transistors
581(10)
14.3.1.1 Transistor Structures
582(1)
14.3.1.2 Transistor Configurations
583(1)
14.3.1.3 Biasing and Modes of Operation
584(1)
14.3.1.4 Equivalent Model
585(2)
14.3.1.5 Transistor Characteristics
587(1)
14.3.1.6 Transistor Assessment Parameters
588(1)
14.3.1.7 Limitations of Transistors
589(2)
14.3.2 Heterojunction Bipolar Transistors
591(4)
14.3.2.1 Materials and Energy Band Diagrams
591(3)
14.3.2.2 Advantages
594(1)
14.3.2.3 Applications
595(1)
14.4 Field Effect Transistors
595(31)
14.4.1 Junction Field Effect Transistor
595(7)
14.4.1.1 JFET Structure
595(1)
14.4.1.2 Types of Microwave FETs
596(1)
14.4.1.3 Principles of Operation
597(4)
14.4.1.4 Comparison between FETs and BJTs
601(1)
14.4.2 Metal Semiconductor Field Effect Transistors
602(8)
14.4.2.1 Structure
602(1)
14.4.2.2 Principles of Operation
603(2)
14.4.2.3 Small-Signal Equivalent Circuit
605(1)
14.4.2.4 MESFET Characteristics
606(4)
14.4.2.5 Advantages and Limitations of Using Schottky Barrier Diode
610(1)
14.4.2.6 Applications
610(1)
14.4.3 Metal-Oxide-Semiconductor Field Effect Transistors
610(11)
14.4.3.1 Structure
610(2)
14.4.3.2 Operation of n-Channel MOSFET
612(1)
14.4.3.3 Circuit Symbols
613(4)
14.4.3.4 Sub-Division of Enhancement Mode
617(3)
14.4.3.5 Materials
620(1)
14.4.3.6 Advantages and Limitations
620(1)
14.4.3.7 Applications
620(1)
14.4.3.8 Comparison of MOSFETs with BJTs
621(1)
14.4.4 High Electron Mobility Transistors
621(5)
14.4.4.1 HEMT Structure
622(1)
14.4.4.2 Operation
623(1)
14.4.4.3 Current-Voltage Characteristics
623(1)
14.4.4.4 HEMTs Fabrication Using IC Technology
624(1)
14.4.4.5 Materials Used
625(1)
14.4.4.6 Advantages
626(1)
14.4.4.7 Applications
626(1)
14.5 Metal-Oxide-Semiconductor Transistors
626(7)
14.5.1 NMOS Logic
627(2)
14.5.1.1 NMOS Structures
627(1)
14.5.1.2 NMOS Operation
628(1)
14.5.2 P-Type Metal-Oxide-Semiconductor Logic
629(1)
14.5.3 Complementary Metal-Oxide-Semiconductor
629(4)
14.5.3.1 CMOS Structures
630(1)
14.5.3.2 CMOS Operation
631(1)
14.5.3.3 Power Dissipation
632(1)
14.5.3.4 Analog CMOS
633(1)
14.5.3.5 Advantages
633(1)
14.5.3.6 Applications
633(1)
14.6 Memory Devices
633(9)
14.6.1 Memory Classification
633(1)
14.6.2 Semiconductor Memories
634(6)
14.6.2.1 Read-Only Memory
634(1)
14.6.2.2 Programmable Read-Only Memory
635(1)
14.6.2.3 Erasable Programm4ble Read-Only Memory
635(1)
14.6.2.4 Electrically Erasable Programmable Read-Only Memory
635(1)
14.6.2.5 Static Random Access Memory
636(1)
14.6.2.6 Bipolar Static Random Access Memory
636(1)
14.6.2.7 Dynamic Random Access Memories
636(2)
14.6.2.8 Flash Memories
638(2)
14.6.3 Some Other Memories
640(2)
14.6.3.1 Ferroelectric RAM
640(1)
14.6.3.2 Resistance RAM
640(1)
14.6.3.3 Phase Change RAM
641(1)
14.6.3.4 Ovonics Unified Memory
642(1)
14.7 Charge-Coupled Devices
642(13)
14.7.1 Structure and Working
642(4)
14.7.2 Types of CCDs
646(1)
14.7.3 Dynamic Characteristics
646(1)
14.7.3.1 Charge Transfer Efficiency (η)
646(1)
14.7.3.2 Frequency Response
647(1)
14.7.3.3 Power Dissipation
647(1)
14.7.4 Other Assessment Parameters
647(1)
14.7.5 Advantages
648(1)
14.7.6 Applications
648(7)
Problems
655(1)
Descriptive Questions
656(1)
Further Reading
657(2)
15 Planar Transmission Lines 659(42)
15.1 Introduction
659(2)
15.2 Striplines
661(4)
15.2.1 Types of Striplines
663(1)
15.2.2 Assessment Parameters
663(2)
15.3 Microstrips
665(10)
15.3.1 Types of Microstrips
666(1)
15.3.2 Assessment Parameters
667(2)
15.3.3 Approximate Electrostatic Solution
669(3)
15.3.4 Microstrip Design and Analysis
672(2)
15.3.5 Suspended Microstrips
674(1)
15.4 Coplanar Waveguides
675(1)
15.4.1 Types of Coplanar Waveguides
675(1)
15.5 Coplanar Strips
676(1)
15.6 Slot Line
677(1)
15.7 Fin Lines
678(1)
15.8 Micromachined Lines
678(1)
15.9 Realisation of Lumped Elements
678(4)
15.9.1 Resistors
679(1)
15.9.2 Inductors
679(1)
15.9.2.1 Ribbon Inductors
679(1)
15.9.2.2 Spiral Inductors
680(1)
15.9.3 Capacitors
680(1)
15.9.3.1 Inter-Digital Capacitor
680(1)
15.9.3.2 Woven Capacitor
681(1)
15.9.4 Monolithic Transformers
681(1)
15.9.4.1 Tapped Transformer
682(1)
15.9.4.2 Interleaved Transformer
682(1)
15.9.4.3 Stacked Transformer
682(1)
15.10 Realisation of Microwave Components
682(15)
15.10.1 Realisation of Basic Stripline Elements
682(1)
15.10.2 Realisation of Transmission Lines
682(1)
15.10.3 Realisation of Stubs
683(1)
15.10.4 Realisation of Power Splitters
683(2)
15.10.4.1 T-Junction Power Splitter
683(1)
15.10.4.2 Wilkinson Power Splitter
683(2)
15.10.5 Realisation of Couplers
685(5)
15.10.5.1 Proximity Couplers
686(2)
15.10.5.2 Lange Coupler
688(1)
15.10.5.3 Branch-Line Coupler
689(1)
15.10.5.4 Rat-Race Coupler
690(1)
15.10.6 Resonators
690(1)
15.10.7 Filters
690(1)
15.10.7.1 Low-Pass Filters
691(1)
15.10.7.2 Band-Pass Filters
691(1)
15.10.8 Circuit Elements
691(6)
Problems
697(1)
Descriptive Questions
698(1)
Further Reading
698(3)
16 Microwave Integrated Circuits 701(20)
16.1 Introduction
701(1)
16.2 Merits and Limitations of MICs
702(2)
16.2.1 Merits
702(1)
16.2.2 Limitations
703(1)
16.3 Types of MICs
704(2)
16.3.1 Hybrid ICs
704(1)
16.3.2 Monolithic Microwave Integrated Circuit
705(1)
16.4 Materials Used
706(2)
16.4.1 Substrates
706(1)
16.4.2 Conducting Materials
706(1)
16.4.3 Dielectric Materials
707(1)
16.4.4 Resistive Materials
707(1)
16.5 Fabrication Techniques
708(2)
16.5.1 Copper Clad Board
708(1)
16.5.2 Thin-Film Fabrication
708(1)
16.5.3 Thick-Film Fabrication
708(1)
16.5.3.1 Photoimageable Thick-Film Process
709(1)
16.6 Fabrication Processes
710(2)
16.6.1 Diffusion and Ion Implantation
710(1)
16.6.2 Oxidation and Film Deposition
710(1)
16.6.3 Epitaxial Growth Technique
710(1)
16.6.3.1 Vapour-Phase Epitaxy
710(1)
16.6.3.2 Molecular-Beam Epitaxy
710(1)
16.6.3.3 Liquid-Phase Epitaxy
710(1)
16.6.4 Lithography
711(1)
16.6.5 Etching and Photo-Resist
711(1)
16.6.6 Deposition
711(1)
16.6.6.1 Vacuum Evaporation
711(1)
16.6.6.2 Electron Beam Evaporation
711(1)
16.6.6.3 Cathode (or dc) Sputtering
712(1)
16.6.6.4 Processes Used in Different Technologies
712(1)
16.7 Illustration of Fabrication by Photo-Resist Technique
712(4)
16.7.1 Planar Resistors
712(2)
16.7.2 Planar Inductors
714(1)
16.7.2.1 Ribbon Inductor
714(1)
16.7.2.2 Round-Wire Inductor
714(1)
16.7.2.3 Single-Turn Flat Circular Loop Inductor
714(1)
16.7.2.4 Circular Spiral Inductor
714(1)
16.7.2.5 Square Spiral Inductor
715(1)
16.7.3 Planar Film Capacitor
715(1)
16.7.3.1 Metal-Oxide-Metal Capacitor
715(1)
16.7.3.2 Interdigitated Capacitor
716(1)
16.8 Fabrication of Devices
716(2)
16.8.1 MOSFET
716(1)
16.8.2 Micro-Fabrication of a CMOS Inverter
716(2)
Problems
718(1)
Descriptive Questions
718(1)
Further Reading
719(2)
Appendix A1: Maxwell's and Other Equations 721(2)
Appendix A2: Solution to Equation 11.19 723(4)
Appendix A3: Solution to Equation 11.25 727(4)
Appendix A4: Solution to Equations 11.29 and 11.30 731(4)
Appendix A5: Solution to Equation 11.42 735(4)
Index 739
Ahmad Shahid Khan holds a BSc, MSc, and Ph.D from Aligarh Muslim University (AMU), India. Possessing over 40 years of teaching experience, the former AMU University Medal recipient, professor, and chairman of the AMU Department of Electronics Engineering is an IETE India fellow, IEI member, and SSI and ISTE life member. A popular invited lecturer, he has published 23 journal and conference papers, co-authored the book Antennas and Wave Propagation (Special Indian Edition), edited the book A Guide to the Laboratory Practice in Electronics and Communication Engineering, and received the Pandit Madan Mohan Malviya Memorial Gold Medal from JIE India.