Muutke küpsiste eelistusi

E-raamat: Microwave and Millimetre-Wave Design for Wireless Communications

  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Jun-2016
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118917299
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 125,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Jun-2016
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118917299
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book describes a full range of contemporary techniques for the design of transmitters and receivers for communications systems operating in the range from 1 through to 300 GHz. In this frequency range there is a wide range of technologies that need to be employed, with silicon ICs at the core but, compared with other electronics systems, a much greater use of more specialist devices and components for high performance – for example, high Q-factor/low loss and good power efficiency. Many text books do, of course, cover these topics but what makes this book timely is the rapid adoption of millimetre-waves (frequencies from 30 to 300 GHz) for a wide range of consumer applications such as wireless high definition TV, “5G” Gigabit mobile internet systems and automotive radars.  It has taken many years to develop low-cost technologies for suitable transmitters and receivers, so previously these frequencies have been employed only in expensive military and space applications. The book will cover these modern technologies, with the follow topics covered;  transmitters and receivers, lumped element filters, tranmission lines and S-parameters, RF MEMS, RFICs and MMICs, and many others.

In addition, the book includes extensive line diagrams to illustrate circuit diagrams and block diagrams of systems, including diagrams and photographs showing how circuits are implemented practically.  Furthermore, case studies are also included to explain the salient features of a range of important wireless communications systems. The book is accompanied with suitable design examples and exercises based on the Advanced Design System – the industry leading CAD tool for wireless design.

More importantly, the authors have been working with Agilent Technologies on a learning & teaching initiative (www.awrcorp.com/professors-in-partnership), which is designed to promote  access to ongoing microwave and RF educational content that enhances and promotes AWR software solutions through ebooks and textbooks. In parallel, Agilent have recently started to offer access to this software to students without charge, providing universities have a site license. Students are able to download the software and use it on their own devices. This advanced text is therefore developed with the partnership in mind; to enable the reader to develop and their own circuits and subsystems using modern software tools and test equipment.

About the Authors xvii
Acknowledgements xix
Preface xxi
1 Introduction 1(31)
1.1 A Brief Timeline of Consumer Electronics
2(1)
1.2 The Electromagnetic Spectrum
3(4)
1.2.1 Spectrum Licensing and Standards
6(1)
1.3 Industry Trends
7(5)
1.3.1 The Multidisciplinary Nature of Modern RF Engineering
8(2)
1.3.2 Business Matters
10(2)
1.4 Forms of Wireless Communication
12(18)
1.4.1 Terrestrial Television
12(3)
1.4.2 Satellite Communications and Broadcasting
15(3)
1.4.3 Terrestrial Line-of-Sight Links
18(2)
1.4.4 Cellular Mobile Communications
20(2)
1.4.5 Wireless Indoor Networks
22(2)
1.4.6 Hybrid Fibre-Radio Systems
24(1)
1.4.7 RFID, NFC and ICT
25(3)
1.4.8 Wireless Sensor Networks
28(1)
1.4.9 Wearables and Body Area Networks
29(1)
1.4.10 Machine-to-Machine and Robotic Communications
29(1)
1.5 Conclusion
30(1)
References
31(1)
2 Transmitters and Receivers 32(49)
2.1 Introduction
32(1)
2.2 Transmitter and Receiver Components
33(5)
2.2.1 Amplifier
33(1)
2.2.2 Oscillator
34(1)
2.2.3 Mixer
34(1)
2.2.4 Band-Pass Filter
35(1)
2.2.5 Modulator and Demodulator
36(1)
2.2.6 Antenna
37(1)
2.2.7 The Superheterodyne Receiver
37(1)
2.3 Noise and Interference
38(10)
2.3.1 Thermal Noise
38(2)
2.3.2 Shot Noise
40(1)
2.3.3 Flicker Noise
41(1)
2.3.4 The Image Band and Noise
42(2)
2.3.5 Interference
44(2)
2.3.6 Atmospheric Attenuation
46(1)
2.3.7 Path Loss
46(2)
2.4 Introduction to Modulation
48(2)
2.4.1 Amplitude Modulation (AM)
49(1)
2.4.2 Frequency Modulation (FM)
50(1)
2.5 Digital Modulation
50(11)
2.5.1 Channel Capacity
51(1)
2.5.2 Amplitude Shift Keying (ASK)
52(2)
2.5.3 Frequency Shift Keying (FSK)
54(1)
2.5.4 Phase Shift Keying (PSK)
55(1)
2.5.5 Constellation Diagram
56(1)
2.5.6 Quadrature Amplitude Modulation (QAM)
57(1)
2.5.7 Orthogonal Frequency Division Multiplexing (OFDM) Modulation
58(1)
2.5.8 Comparison of Eb/N0 versus BER for Various Modulation Schemes
59(1)
2.5.9 Bandwidth Utilisation Efficiency and CNR
60(1)
2.6 Noise Analysis and Link Budget Calculation
61(10)
2.6.1 Noise Equivalent Bandwidth
61(1)
2.6.2 Noise Analysis in a Circuit
61(1)
2.6.3 Figures of Merit
62(3)
2.6.4 Noise Performance of Cascaded Networks
65(3)
2.6.5 Noise Calculation Examples
68(3)
2.7 Some Wireless Transceiver Architectures
71(8)
2.7.1 Superheterodyne
71(2)
2.7.2 Double Conversion
73(1)
2.7.3 Direct Conversion
74(3)
2.7.4 Low-IF Architecture
77(1)
2.7.5 Band-Pass Sampling Receiver
78(1)
2.8 Conclusion
79(1)
References
80(1)
3 Scattering Parameters 81(18)
3.1 Introduction
81(1)
3.2 Z-Parameters (Open-Circuit Impedance Parameters)
81(1)
3.3 Y-Parameters (Short-Circuit Admittance Parameters)
82(1)
3.4 H-Parameters (Hybrid Parameters)
83(1)
3.5 ABCD-Parameters (Transmission or Chain Parameters)
84(1)
3.6 Summary of Two-Port Parameter Operations
85(2)
3.7 Scattering Parameters
87(8)
3.7.1 Flowgraph Representation of Two-Port S-Parameters
89(1)
3.7.2 Properties of S-Parameters
90(1)
3.7.3 S-Parameters and Decibels
90(1)
3.7.4 N-Port S-Parameters
91(3)
3.7.5 Measuring S-Parameters
94(1)
3.8 Transmission Parameters
95(3)
3.8.1 Definition
95(1)
3.8.2 Relationship Between T- and ABCD-Parameters
96(1)
3.8.3 Application to Cascaded Networks
97(1)
References
98(1)
4 Lumped-Element Filters 99(26)
4.1 Introduction
99(1)
4.2 Filter Theory
100(7)
4.2.1 Transfer Function Analysis
100(1)
4.2.2 The s-Domain
101(1)
4.2.3 Bode Plots
102(1)
4.2.4 Impulse Response and Causality
103(2)
4.2.5 The Need for a System Impedance
105(2)
4.3 Butterworth, Chebyshev and Elliptic Low-Pass Prototypes
107(4)
4.3.1 Butterworth Low-Pass Filter
107(2)
4.3.2 Chebyshev Filter
109(1)
4.3.3 Elliptic Filter
110(1)
4.4 Filter Design Method
111(9)
4.4.1 High-Pass Transformation
113(2)
4.4.2 Band-Pass Transformation
115(1)
4.4.3 Band-Stop Transformation
116(1)
4.4.4 Band-Pass Filter Design Example
117(1)
4.4.5 Group Delay
118(2)
4.5 Practical Lumped Elements
120(1)
4.6 Capacitively-Coupled Resonator Filter
121(3)
References
124(1)
5 Transmission Line Theory 125(30)
5.1 Introduction
125(1)
5.2 Reflections on Transmission Lines
126(3)
5.2.1 Open-Circuited Line
127(1)
5.2.2 Short-Circuited Line
127(2)
5.3 Transmission Line Theory
129(6)
5.3.1 Telegrapher's Equation
129(5)
5.3.2 Lossless Transmission Line
134(1)
5.4 Standing Waves on a Lossless Transmission Line with Mismatched Load
135(7)
5.4.1 Impedance Variation along a Transmission Line
140(2)
5.5 The Smith Chart
142(8)
5.5.1 Standing Wave Ratio Circles
147(2)
5.5.2 Smith Chart Computer Tools
149(1)
5.6 The Signal Flow Graph
150(4)
5.6.1 SFG Diagram
150(2)
5.6.2 SFG Simplification
152(2)
5.7 Conclusion
154(1)
References
154(1)
6 Transmission Line Components 155(32)
6.1 Introduction
155(1)
6.2 Coaxial Components
155(2)
6.3 Twisted Pairs and Twin-Lead
157(1)
6.4 Rectangular Waveguide
158(3)
6.5 Microstrip
161(5)
6.5.1 Analysis and Synthesis
163(1)
6.5.2 Microstrip Frequency Limitations
163(1)
6.5.3 Microstrip Discontinuities and EDA Software
164(1)
6.5.4 Test Fixtures and Housings
164(2)
6.6 Common Microstrip Components
166(11)
6.6.1 Quasi-Lumped Elements
166(2)
6.6.2 Distributed Elements
168(2)
6.6.3 Wilkinson Splitter/Combiner
170(1)
6.6.4 Parallel-Coupled Lines
171(2)
6.6.5 Lange Coupler
173(1)
6.6.6 Branch-Line Coupler
173(1)
6.6.7 Rat-Race Hybrid
174(1)
6.6.8 Planar Marchand Balun
175(1)
6.6.9 Microstrip Resonators
176(1)
6.7 Uniplanar Transmission Lines
177(2)
6.7.1 Coplanar Waveguide
177(1)
6.7.2 Coplanar Strips
178(1)
6.7.3 Slotline
178(1)
6.8 Other Transmission Line Types
179(5)
6.8.1 Stripline
179(1)
6.8.2 Suspended Substrate Techniques
179(1)
6.8.3 Thin-Film Microstrip
180(1)
6.8.4 Lumped and Lumped-Distributed Components
180(1)
6.8.5 Substrate Integrated Waveguide
181(1)
6.8.6 Ridge Waveguide and Finline
182(1)
6.8.7 Dielectric Waveguides
183(1)
6.8.8 Micromachined Lines
184(1)
6.9 Conclusion
184(1)
References
185(2)
7 Transmission Line Filters 187(61)
7.1 Introduction
187(1)
7.2 Unloaded Q of a Transmission Line Resonator
188(1)
7.3 Lumped-to-Distributed Conversion
189(2)
7.3.1 Shunt Stub
189(1)
7.3.2 Series Line
190(1)
7.4 Impedance and Admittance Inverters
191(11)
7.4.1 Definition
191(3)
7.4.2 Network Transformation with Impedance and Admittance Inverters
194(4)
7.4.3 Inverter Realisation
198(4)
7.5 Richards Transformation
202(1)
7.6 Unit Element, Kuroda's Identity and Coupled-Lines Section
203(5)
7.6.1 Unit Element
203(1)
7.6.2 Kuroda's Identity
204(3)
7.6.3 Coupled-Lines Section
207(1)
7.7 Stepped-Impedance Low-Pass Filter
208(3)
7.8 Parallel-Coupled Line Filter
211(6)
7.9 Interdigital Filter
217(6)
7.10 Combline Filter
223(10)
7.11 Hairpin Filter
233(4)
7.12 Cross-Coupled Filters
237(9)
7.13 Conclusion
246(1)
References
247(1)
8 Semiconductor Devices 248(31)
8.1 Introduction
248(1)
8.2 Fabrication Technology
249(7)
8.2.1 Processing Steps
250(3)
8.2.2 Extending Moore's Law
253(2)
8.2.3 More than Moore
255(1)
8.2.4 Other Nanofabrication Approaches
256(1)
8.3 Field-Effect Transistors
256(7)
8.3.1 GaAs and InP HEMTs
257(2)
8.3.2 GaN HEMTs
259(1)
8.3.3 HEMT Small-Signal Equivalent Circuit
259(3)
8.3.4 Dual-Gate FETs
262(1)
8.3.5 CMOS
262(1)
8.3.6 LDMOS
263(1)
8.4 Bipolar Transistors
263(4)
8.4.1 SiGe Hetemjunction Bipolar Transistors (HBTs)
265(1)
8.4.2 GaAs and InP HBTs
266(1)
8.5 Package Styles
267(2)
8.6 High-Power Transistors
269(2)
8.6.1 High-Power Device Geometries
270(1)
8.7 RFICs and MMICs
271(4)
8.7.1 On-Chip Lumped Passive Components
272(3)
8.8 Two-Terminal Devices
275(2)
8.8.1 Schottky Diodes
275(1)
8.8.2 PIN Diodes
276(1)
8.8.3 Sources
276(1)
References
277(2)
9 Impedance Matching 279(19)
9.1 Introduction
279(1)
9.2 The Purpose of Impedance Matching
279(3)
9.3 Lumped-Element Matching Networks
282(7)
9.3.1 Lumped-Element Matching with L-Networks
284(3)
9.3.2 Matching with π- and T-Networks
287(2)
9.4 Distributed Matching Networks
289(6)
9.4.1 Stub Matching
290(3)
9.4.2 Single-Section Quarter-Wave Transformer
293(1)
9.4.3 Multisection Quarter-Wave Transformer
294(1)
9.4.4 Other Types of Transmission Line Transformer
294(1)
9.5 The Cyclic Nature of Distributed Circuits
295(1)
9.6 Conclusion
296(1)
References
296(2)
10 Amplifiers 298(46)
10.1 Introduction
298(2)
10.1.1 Gain Definitions
298(2)
10.2 Transistor Configurations
300(2)
10.2.1 FET Configurations
300(1)
10.2.2 Bipolar Transistor Configurations
301(1)
10.3 Classical Analysis of Gain and Stability
302(7)
10.3.1 Stability Circles
304(1)
10.3.2 Stability Factor
305(1)
10.3.3 Maximum Gain
306(2)
10.3.4 Stabilisation Techniques
308(1)
10.4 DC Biasing
309(1)
10.4.1 Inductors as Bias Chokes
309(1)
10.4.2 Bias Stubs
309(1)
10.4.3 Active Loads
310(1)
10.5 Common Amplifier Topologies
310(5)
10.5.1 Reactively Matched Amplifiers
311(1)
10.5.2 FET Feedback Amplifier
312(1)
10.5.3 Darlington Pair
312(1)
10.5.4 Long-Tailed Pair
313(1)
10.5.5 Distributed Amplifier
313(1)
10.5.6 Balanced Amplifier
314(1)
10.6 Low-Noise Amplifiers
315(3)
10.6.1 Cascaded Noise Figures
316(1)
10.6.2 Noise Circles
317(1)
10.7 Nonlinearity and Intermodulation
318(8)
10.7.1 Nonlinear Characteristics
318(1)
10.7.2 Second-Order Intermodulation
319(2)
10.7.3 Third-Order Intermodulation
321(2)
10.7.4 Higher-Order Terms
323(1)
10.7.5 Intermodulation in Cascaded Circuits
323(2)
10.7.6 Other Measures of Distortion in RF Amplifiers
325(1)
10.7.7 Intermodulation in Other Components
325(1)
10.8 Power Amplifier Classes of Operation
326(8)
10.8.1 Class A
327(2)
10.8.2 Class B
329(2)
10.8.3 Class AB
331(1)
10.8.4 Class C
331(1)
10.8.5 Class D
332(1)
10.8.6 Class E
333(1)
10.8.7 Class F
334(1)
10.8.8 Other Classes
334(1)
10.9 Power-Combining Techniques
334(5)
10.9.1 Planar Combining Techniques
335(2)
10.9.2 Coaxial and Waveguide Combiners
337(1)
10.9.3 Spatial and Quasi-Optical Power Combining
338(1)
10.10 Power Amplifier Linearisation
339(2)
10.10.1 Feedback Techniques
339(1)
10.10.2 Predistortion Linearisation
340(1)
10.10.3 Feedforward Linearisation
340(1)
10.11 Conclusion
341(1)
References
342(2)
11 Oscillators 344(47)
11.1 Introduction
344(1)
11.2 Basic Concepts
344(19)
11.2.1 One-Port Model: Negative Resistance
344(5)
11.2.2 Two-Port Model: Positive Feedback
349(5)
11.2.3 Nyquist Theory Applied to the Oscillation Condition
354(6)
11.2.4 Timing Jitter
360(1)
11.2.5 Phase Noise
361(2)
11.3 Resonators
363(4)
11.3.1 Dielectric Resonator
363(1)
11.3.2 Transmission Line Resonator
363(2)
11.3.3 Quartz Crystal Resonator
365(2)
11.4 Some Oscillator Circuits
367(15)
11.4.1 Colpitts
367(5)
11.4.2 Cross-Coupled Oscillator
372(3)
11.4.3 Voltage-Controlled Oscillator
375(2)
11.4.4 Phase-Locked Loops
377(5)
11.5 Oscillator Design Procedure
382(7)
11.5.1 Design Flow
382(2)
11.5.2 Negative Resistance Technique Applied to Microwave Oscillator Design
384(5)
11.6 Conclusion
389(1)
References
390(1)
12 Mixers and Modulators 391(24)
12.1 Introduction
391(1)
12.2 Single-Ended Mixers
392(6)
12.2.1 Diode Mixers
396(1)
12.2.2 Active FET Mixers
396(1)
12.2.3 Resistive FET Mixers
397(1)
12.3 Balanced and Image-Rejection Mixers
398(4)
12.3.1 Single-Balanced Mixers
399(1)
12.3.2 Double-Balanced Mixers
399(2)
12.3.3 Image-Rejection Mixer and SSB Upconverter
401(1)
12.4 Baluns and Couplers
402(2)
12.4.1 Transmission Line Baluns
402(1)
12.4.2 Lumped-Element Splitters and Combiners
403(1)
12.4.3 Active Splitters and Combiners
403(1)
12.5 Common Mixer Circuits
404(5)
12.5.1 Passive Double-Balanced Diode Mixer
404(1)
12.5.2 Gilbert Cell Mixer
405(1)
12.5.3 Double-Balanced Resistive FET Mixer
405(2)
12.5.4 Distributed FET Mixer
407(1)
12.5.5 Millimetre-Wave Single-Balanced Diode Mixer
408(1)
12.6 Modulators
409(3)
12.6.1 Vector Modulators using Mixers
409(1)
12.6.2 Other Forms of Vector Modulator
410(2)
12.7 Mixer Linearisation and Adaptive Signal Cancellation
412(1)
12.8 Conclusion
412(1)
References
413(2)
13 RF MEMS 415(19)
13.1 Introduction
415(1)
13.2 Novel Transceiver Architectures using RF MEMS
416(1)
13.3 Micromachined Transmission Lines and Passive Elements
416(4)
13.3.1 Rectangular-Coaxial Transmission Lines
417(1)
13.3.2 Micromachined Coplanar Waveguide
418(1)
13.3.3 MEMS Inductors
419(1)
13.3.4 MEMS Tuneable Capacitor
420(1)
13.4 RF MEMS Switches
420(4)
13.5 Reconfigurable Impedance-Matching Networks
424(1)
13.6 MEMS Phase Shifters
425(1)
13.7 Tuneable Filters
426(1)
13.8 MEMS Antennas
427(1)
13.9 RF MEMS Fabrication and Packaging
428(2)
13.10 Reliability and Design Consideration of RF MEMS Devices
430(2)
References
432(2)
14 Antennas and Propagation 434(30)
14.1 Introduction
434(3)
14.2 Antenna Systems
437(10)
14.2.1 Wire Antennas
437(5)
14.2.2 Travelling-Wave Antennas
442(1)
14.2.3 Reflector Antennas
443(1)
14.2.4 Horn Antennas
444(1)
14.2.5 Microstrip Patch Antennas
445(2)
14.2.6 NFC Antennas
447(1)
14.3 Transmission Equations, Free-Space Path Loss and Link Budget Calculation
447(4)
14.3.1 Transmission Equation
447(2)
14.3.2 Free-Space Path Loss
449(1)
14.3.3 Link Budget
450(1)
14.4 Other Propagation Effects
451(1)
14.4.1 Reflection and Refraction
451(1)
14.4.2 Diffraction
451(1)
14.4.3 Scattering
452(1)
14.5 Millimetre-Wave and THz Propagation
452(1)
14.6 Indoor Propagation
453(2)
14.6.1 Long-Distance Models
453(1)
14.6.2 Partition Losses on the Same Floor
453(1)
14.6.3 Partition Losses Between Floors
454(1)
14.6.4 Motley—Keenan Model
454(1)
14.6.5 Ericsson Multiple Breaking Model
454(1)
14.7 Outdoor Propagation
455(2)
14.7.1 Theoretical Propagation Prediction Models
455(1)
14.7.2 Empirical or Statistical Models
455(1)
14.7.3 Semi-Empirical Models
455(1)
14.7.4 Okumura Model
455(1)
14.7.5 Hata Model
456(1)
14.7.6 Other Models
456(1)
14.8 Multipath Propagation
457(1)
14.8.1 Multipath Fading
457(1)
14.9 Antenna Arrays
458(2)
14.10 Multiple-Input and Multiple-Output Systems
460(2)
References
462(2)
15 Digital Signal Processing for Transceivers 464(31)
15.1 Introduction
464(1)
15.2 RF Performance Challenges
464(3)
15.2.1 Imperfections in the RF Front End
465(1)
15.2.2 Cost and Low Power Consumption
466(1)
15.2.3 Linearity
467(1)
15.3 DSP in Modern Wireless Communications Systems
467(1)
15.4 Signal Conversion and Processing
468(14)
15.4.1 Analogue-to-Digital Conversion
468(5)
15.4.2 Digital-to-Analogue Conversion
473(1)
15.4.3 Discrete Fourier Transform
474(1)
15.4.4 Fast Fourier Transform
475(2)
15.4.5 CORDIC Algorithm
477(5)
15.5 Digital Calibration for I—Q Imbalance
482(4)
15.6 Digital Predistortion Techniques
486(3)
15.7 DSP Techniques for OFDM
489(2)
15.8 MIMO
491(2)
15.9 Conclusion
493(1)
References
494(1)
16 Packaging and Assembly 495(20)
16.1 Introduction
495(1)
16.2 Technology Options and System Partitioning
496(2)
16.3 PCB/Laminate Technology
498(2)
16.3.1 Rapid Prototyping of PCBs
500(1)
16.4 Thin-Film Fabrication
500(1)
16.5 Thick-Film Fabrication
500(3)
16.5.1 Photoimageable Thick-Film Process
502(1)
16.6 LTCC Technology
503(1)
16.7 Chip Packaging
504(4)
16.7.1 Chip-on-Board
504(1)
16.7.2 Lead Frame
505(1)
16.7.3 Pin-Grid Array (PGA) and Ball-Grid Array (BGA)
505(1)
16.7.4 Flip-Chip
505(2)
16.7.5 3-D Packaging
507(1)
16.8 Manufacturing using Surface Mount Technology
508(1)
16.8.1 Solder Deposition
508(1)
16.8.2 Solder Reflow
509(1)
16.9 System-in-Package and System-on-Substrate Technology
509(3)
16.10 Transitions and Antenna-in-Package Techniques
512(1)
16.11 Conclusion
512(1)
References
513(2)
17 Electronic Design Automation 515(24)
17.1 Introduction
515(3)
17.2 Linear Frequency-Domain Analysis
518(1)
17.3 Time-Domain Simulation
518(4)
17.4 Harmonic Balance
522(3)
17.4.1 Concept
523(1)
17.4.2 Application to Microwave and Millimetre-Wave Circuits
524(1)
17.5 Large-Signal/Small-Signal Simulation
525(4)
17.6 Planar Electromagnetic Simulation
529(4)
17.7 3-D Electromagnetic Simulation
533(1)
17.8 Integrated Circuit Simulation and Layout
534(4)
17.8.1 Process Design Kits for RFIC and MMIC Design
534(4)
17.9 Conclusion
538(1)
References
538(1)
18 Measurement Techniques 539(30)
18.1 Introduction
539(1)
18.2 The Oscilloscope
540(2)
18.3 Function Generator and Arbitrary Waveform Generator
542(1)
18.4 LCR Meters and Component Analysers
542(1)
18.5 Signal Generators
542(2)
18.6 Spectrum and Signal Analysers
544(3)
18.6.1 Vector Signal Analysers
546(1)
18.6.2 Harmonic Mixers
547(1)
18.7 Vector Network Analysers
547(11)
18.7.1 VNA Calibration
549(3)
18.7.2 Calibration Standards
552(2)
18.7.3 Electronic Calibration
554(1)
18.7.4 Calibration Example
554(2)
18.7.5 Connector Care
556(1)
18.7.6 Time-Domain Measurements
557(1)
18.8 Microstrip Test Fixture Measurements
558(2)
18.8.1 In-Fixture TRL Calibration
559(1)
18.9 Probe Station Measurements
560(3)
18.9.1 Probe Calibration Techniques
561(1)
18.9.2 On-Wafer Measurements of Microstrip DUTs
562(1)
18.10 Mixed-Mode S-Parameters
563(2)
18.11 Source- and Load-Pull Measurements
565(1)
18.12 X-Parameter Measurements
565(2)
References
567(2)
Glossary 569(6)
Index 575
Professor Ian Robertson, University of Leeds, UK Ian Robertson (FIEEE 2012) received his BSc (Eng.) and PhD degrees from King's College London in 1984 and 1990, respectively. From 1984 to 1986 he worked in the MMIC Research Group at Plessey Research (Caswell). After that he returned to King's College London, initially as a Research Assistant and then as a Lecturer, leading the MMIC Research Team, and finally becoming Reader in 1994. In 1998 he was appointed Professor of Microwave Subsystems Engineering at the University of Surrey, where he established the Microwave Systems Research Group and was a founder member of the Advanced Technology Institute. In June 2004 he was appointed to the University of Leeds Centenary Chair in Microwave and Millimetre-Wave Circuits and he is now Head of the School of Electronic & Electrical Engineering.

Dr Nutapong Somjit, University of Leeds, UK Nutapong Somjit?received the Dipl.-Ing. (M.Sc.) from Dresden University of Technology, Dresden, Germany, in 2005, and the PhD from KTH Royal Institute of Technology, Stockholm, Sweden, in 2012, all in electrical engineering. Since August 2012, he has been with the Chair for Circuit Design and Network Theory, Dresden University of Technology, where he leads a research team in microsensors and MEMS ICs. He is currently a lecturer (assistant professor) in the School of Electronic and Electrical Engineering, University of Leeds, United Kingdom.

Dr Mitchai Chongcheawchamnan, Prince of Songkla University, Thailand Mitchai Chongcheawchamnan was born in Bangkok, Thailand. He received the B.Eng. degree in telecommunication from King Mongkut's Institute of Technology Ladkrabang, Bangkok, in 1992, the M.Sc. degree in communication and signal processing from Imperial College, London, U.K., in 1995, and the Ph.D. degree in electrical engineering from the University of Surrey, Guildford, U.K., in 2001. He joined the Mahanakorn University of Technology, Bangkok, in 1992, as a Lecturer. In 2008, he joined the Faculty of Engineering, Prince of Songkla University, Songkhla, Thailand, as an Associate Professor.