Muutke küpsiste eelistusi

E-raamat: Microwave Noncontact Motion Sensing and Analysis

  • Formaat - EPUB+DRM
  • Hind: 137,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An authoritative guide to the theory, technologies, and state-of-the-art applications in microwave noncontact sensing and analysis

Engineering researchers have recently developed exciting advances in microwave noncontact sensing and analysis, with new applications in fields ranging from medicine to structural engineering, manufacturing to transportation. This book provides an authoritative look at the current state-of-the-art in the field.

Drawing upon their years of experience in both cutting-edge research and industry applications, the authors address microwave radar for both noncontact vital sign detection and mechanical movement measurement. They explore key advances in everyday applications of microwave and Doppler radar, especially in the areas of radio frequency technologies, microelectronic fabrication processes, and signal processing hardware and algorithms.

Microwave Noncontact Motion Sensing and Analysis:





Reviews the theory and technical basics, from electromagnetic propagation to signal processing Discusses all major types of motion sensing radar, including Doppler, pulse, and FMCW Explores important advances in detection and analysis techniques Uses numerous case studies to illustrate current applications in an array of fields Provides integrated coverage of human vital sign detection, through-wall radar, and Doppler vibrometry Offers a well-informed look at emerging technologies and the shape of things to come

An important resource for engineers and researchers with a professional interest in micro-wave sensing technology, Microwave Noncontact Motion Sensing and Analysis is also a source of insight and guidance for professionals in healthcare, transportation safety, the military, and law enforcement.
Preface xi
1 Introduction
1(6)
1.1 Background
1(1)
1.2 Recent Progress on Microwave Noncontact Motion Sensors
2(2)
1.2.1 Microwave/Millimeter-Wave Interferometer and Vibrometer
2(1)
1.2.2 Noncontact Vital Sign Detection
3(1)
1.3 About This Book
4(3)
2 Theory of Microwave Noncontact Motion Sensors
7(46)
2.1 Introduction to Radar
7(11)
2.1.1 Antennas
8(2)
2.1.2 Propagation and Antenna Gain
10(3)
2.1.3 Radio System Link and Friis Equation
13(2)
2.1.4 Radar Cross Section and Radar Equation
15(1)
2.1.5 Radar Signal-To-Noise Ratio
16(1)
2.1.6 Signal-Processing Basics
17(1)
2.2 Mechanism of Motion Sensing Radar
18(13)
2.2.1 Doppler Frequency Shift
18(1)
2.2.2 Doppler Nonlinear Phase Modulation
19(7)
2.2.3 Pulse Radar
26(1)
2.2.4 FMCW Radar
27(2)
2.2.5 Comparison of Different Detection Mechanisms
29(2)
2.3 Key Theory and Techniques of Motion Sensing Radar
31(22)
2.3.1 Null and Optimal Detection Point
31(2)
2.3.2 Complex Signal Demodulation
33(1)
2.3.3 Arctangent Demodulation
34(2)
2.3.4 Double-Sideband Transmission
36(7)
2.3.5 Optimal Carrier Frequency
43(6)
2.3.6 Sensitivity: Gain and Noise Budget
49(4)
3 Hardware Development of Microwave Motion Sensors
53(54)
3.1 Radar Transceiver
53(39)
3.1.1 Bench-Top Radar Systems
53(8)
3.1.2 Board Level Radar System Integration
61(2)
3.1.3 Motion Sensing Radar-On-Chip Integration
63(22)
3.1.4 Pulse-Doppler Radar and Ultra-Wideband Technologies
85(4)
3.1.5 FMCW Radar
89(3)
3.2 Radar Transponders
92(7)
3.2.1 Passive Harmonic Tag
93(2)
3.2.2 Active Transponder for Displacement Monitoring
95(4)
3.3 Antenna Systems
99(8)
3.3.1 Phased Array Systems
99(1)
3.3.2 Broadband Antenna
100(3)
3.3.3 Helical Antenna
103(4)
4 Advances in Detection and Analysis Techniques
107(50)
4.1 System Design and Optimization
107(29)
4.1.1 Shaking Noise Cancellation Using Sensor Node Technique
107(4)
4.1.2 DC-Coupled Displacement Radar
111(5)
4.1.3 Random Body Movement Cancellation Technique
116(8)
4.1.4 Nonlinear Detection of Complex Vibration Patterns
124(7)
4.1.5 Motion Sensing Based on Self-Injection-Locked Oscillators
131(5)
4.2 Numerical Methods: Ray-Tracing Model
136(5)
4.3 Signal Processing
141(16)
4.3.1 MIMO, MISO, SIMO Techniques
141(1)
4.3.2 Spectral Estimation Algorithms
142(11)
4.3.3 Joint Time---Frequency Signal Analysis
153(4)
5 Applications and Future Trends
157(46)
5.1 Application Case Studies
158(36)
5.1.1 Assisted Living and Smart Homes
158(6)
5.1.2 Sleep Apnea Diagnosis
164(5)
5.1.3 Wireless Infant Monitor
169(4)
5.1.4 Measurement of Rotational Movement
173(5)
5.1.5 Battlefield Triage and Enemy Detection
178(1)
5.1.6 Earthquake and Fire Emergency Search and Rescue
179(1)
5.1.7 Tumor Tracking in Radiation Therapy
180(5)
5.1.8 Structural Health Monitoring
185(9)
5.2 Development of Standards and State of Acceptance
194(2)
5.3 Future Development Trends
196(6)
5.4 Microwave Industry Outlook
202(1)
References 203(12)
Index 215
Changzhi Li, PhD, is Assistant Professor in the Electrical and Computer Engineering Department, Texas Tech University. His research interests include biomedical applications of microwave/RF, wireless sensor, and RF/analog circuits.

Jenshan Lin, PhD, is a Professor in the Department of Electrical and Computer Engineering, University of Florida. Before joining the University of Florida, he worked for AT&T/Lucent Bell Laboratories and Agere Systems.