Muutke küpsiste eelistusi

E-raamat: Microwave and Radio-Frequency Technologies in Agriculture: An Introduction for Agriculturalists and Engineers

  • Formaat: 369 pages
  • Ilmumisaeg: 22-Feb-2016
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110455472
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 369 pages
  • Ilmumisaeg: 22-Feb-2016
  • Kirjastus: De Gruyter
  • Keel: eng
  • ISBN-13: 9783110455472
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Humanitys ability to produce enough food is mostly due to adoption of new methods and technologies by the agricultural industries as they became available. New information, communication and high speed processing and precision agriculture technologies have the potential to transform the agricultural industry. These technologies incorporate radio-frequency and microwave radiation into their systems. This book presents an overview of how these technologies are being used in agricultural systems. The main purpose of the book is to provide a glimpse of what is possible and encourage practitioners in the engineering and agricultural industries to explore how radio-frequency and microwave systems might further enhance the agricultural industry. The authors have extensive experience in agricultural and microwave engineering, instrumentation and communication systems.
Preface VII
Section 1: General Introduction
1 Introduction
1(5)
References
5(1)
2 Some Brief Examples of Technical Innovation in Agricultural Industries
6(13)
2.1 Machines
7(1)
2.2 Early Innovations in Agriculture
8(1)
2.3 Transportation Technologies
9(1)
2.4 The Tractor
9(2)
2.5 The Green Revolution
11(1)
2.6 High Resolution Production Systems
12(1)
2.7 Spatial Data
12(3)
2.8 Temporal Data
15(1)
2.9 Conclusions
16(1)
References
17(2)
3 A Brief Overview of Radio Frequency and Microwave Applications in Agriculture
19(13)
3.1 Heating Applications
19(6)
3.1.1 Crop Drying
19(1)
3.1.2 Quarantine
19(2)
3.1.3 Effect of Microwave Heating on Seeds and Plants
21(1)
3.1.4 Microwave Treatment of Animal Fodder
22(1)
3.1.5 Microwave Assisted Extraction
23(1)
3.1.6 Microwave Assisted Pyrolysis and Bio-fuel Extraction
24(1)
3.2 Sensor Applications
25(3)
3.2.1 Assessment of Wood
25(1)
3.2.2 Radar Systems
26(2)
3.3 Communication Systems
28(1)
3.4 Conclusion
28(1)
References
28(4)
4 Microwaves and their Interactions with Materials
32(18)
4.1 Electric and Magnetic Field Vectors
33(1)
4.2 Maxwell's Equations for Electromagnetism
34(3)
4.3 Magnetic Vector Potential
37(1)
4.4 Continuity
38(1)
4.5 Conservation of Electromagnetic Energy
39(1)
4.6 Boundary Conditions
40(2)
4.7 Wave Impedance
42(2)
4.8 Reflection and Transmission at an Interface
44(3)
4.9 Electromagnetic Behaviour of Materials
47(1)
4.10 Conclusions
47(1)
References
48(2)
Section 2: Non-destructive Characterisation Using Electromagnetic Waves
5 Section Introduction
50(2)
References
50(2)
6 Techniques for Measuring Dielectric Properties
52(26)
6.1 Dielectric Properties
52(3)
6.2 Polarization
55(2)
6.2.1 Dipolar Polarization
55(1)
6.2.2 Ionic Polarization
56(1)
6.2.3 Electronic And Atomic Polarization
56(1)
6.2.4 Interfacial Or Space Charge Polarization
56(1)
6.2.5 Dielectric Loss
56(1)
6.2.6 Relaxation Time
57(1)
6.3 Cole-Cole diagram
57(1)
6.3.1 Bode' plots and Nyquist Plots
57(1)
6.4 Microwave Measurement Methods
58(14)
6.4.1 Transmission/Reflection Line Method
61(1)
6.4.2 Resonant Technique
61(1)
6.4.3 Dielectric Resonator
62(2)
6.4.4 Dielectric Post Resonator
64(1)
6.4.5 Whispering Gallery Mode Resonator
65(1)
6.4.6 Open-ended co-axial probe method
65(1)
6.4.7 Dielectric Probe (Coaxial probe)
66(3)
6.4.8 Free Space Method
69(1)
6.4.9 Antenna
70(1)
6.4.10 Near-field Microwave Probe
71(1)
6.4.11 Reentrant Cavity
72(1)
6.4.12 Fabry-Perot Resonator
72(1)
6.5 Conclusions
72(3)
References
75(3)
7 Dielectric Properties of Organic Materials
78(21)
7.1 Frequency Dependency of Dielectric Properties
79(2)
7.2 Temperature Dependence of the Dielectric Properties
81(1)
7.3 Density and Field Orientation Dependence of Dielectric Properties
82(3)
7.4 Dielectric Modelling of Organic Materials
85(11)
7.4.1 Modelling the Dielectric Properties of Free Water
86(3)
7.4.2 Modelling the Dielectric Properties of Bound Water
89(1)
7.4.3 Modelling the Dielectric Properties of Moist Wood
90(1)
7.4.4 Modelling the Dielectric Properties of Grains
91(1)
7.4.5 Modelling the Dielectric Properties of Soils
92(2)
7.4.6 Dielectric Properties of Insects
94(2)
7.5 Conclusions
96(1)
References
96(3)
8 Insect and Decay Detection
99(23)
8.1 Radar Entomology
99(17)
8.1.1 Antennas
100(1)
8.1.2 Rectangular Apertures
100(2)
8.1.3 Open Ended Wave-Guide
102(1)
8.1.4 Horn Antennas
103(2)
8.1.5 Circular Apertures
105(2)
8.1.6 Antenna Gain
107(2)
8.1.7 Radar Range
109(2)
8.1.8 Radar Cross Section
111(2)
8.1.9 Close Range Radar
113(1)
8.1.10 Motion Detection - Doppler Shift
114(2)
8.2 Free-Space Microwave Systems
116(4)
8.2.1 Decay Detection
118(2)
8.3 Conclusions
120(1)
References
120(2)
9 Moisture Monitoring
122(8)
9.1 Free-Space Moisture Detection
122(3)
9.1.1 Practical Applications
124(1)
9.2 Microwave Emissions as a Measure of Moisture
125(3)
9.3 Radar Moisture Measurement
128(1)
References
129(1)
10 Radar Imaging
130(9)
10.1 Radar Imaging
130(3)
10.2 Image Distortion
133(2)
10.3 Target Interaction and Image Appearance
135(1)
10.4 Airborne versus Space-borne Radar
136(1)
10.5 Ground Penetrating Radar
137(1)
References
138(1)
11 Electromagnetic Survey Techniques
139(13)
11.1 Electromagnetic Induction
139(5)
11.1.1 EM31
140(1)
11.1.2 EM34
141(1)
11.1.3 EM39
141(1)
11.1.4 EM38
141(3)
11.2 Global Positioning System
144(4)
11.2.1 Principles of GPS Operation
145(1)
11.2.2 Step 1: Triangulating from Satellites
145(1)
11.2.3 Step 2: Measuring distance from a satellite
145(1)
11.2.4 Step 3: Getting perfect timing
146(1)
11.2.5 Step 4: Knowing where a satellite is in space
147(1)
11.2.6 Step 5: Correcting errors
147(1)
11.2.7 Differential GPS
147(1)
11.3 Geographic Information Systems
148(2)
11.3.1 Integration
148(1)
11.3.2 Limitations
149(1)
References
150(2)
Section 3: Dielectric Heating
12 Section Introduction
152(3)
References
153(2)
13 Dielectric Heating
155(20)
13.1 Conductive Heat Transfer
155(2)
13.2 Convective Heating
157(1)
13.3 Radiative Heat Transfer
158(3)
13.4 Microwave Heating
161(1)
13.5 Microwave Frequency and its Influence over Microwave Heating
162(1)
13.6 The Influence of Material Geometry on Microwave Heating
163(5)
13.7 Comparative Efficiency of Convective and Microwave Heating
168(1)
13.8 Thermal Runaway
169(2)
13.9 Examples of Using Thermal Runaway to Great Advantage
171(1)
13.10 Conclusion
171(1)
Nomenclature
171(2)
References
173(2)
14 Simultaneous Heat and Moisture Movement
175(7)
14.1 Temperature Sensing in Electromagnetic Fields
179(1)
References
180(2)
15 Microwave Drying
182(7)
15.1 Microwave Drying of Crop Fodder
183(1)
15.2 Modelling Microwave Drying
184(2)
15.3 Effect of Microwave Drying on Milling Properties
186(1)
References
187(2)
16 Radio Frequency and Microwave Processing of Food
189(5)
16.1 Dielectric Properties of Foods
189(3)
16.2 Comparative Efficiency of Convective and Microwave Heating
192(1)
References
193(1)
17 Microwave Applicators
194(24)
17.1 Wave-Guides
194(1)
17.2 Waveguide Modes
195(2)
17.3 Other Wave-guide Modes
197(2)
17.4 Transverse Magnetic Modes
199(1)
17.5 Wave-guide Cut-off Conditions
200(1)
17.6 Wavelength in a Wave-guide
200(1)
17.7 Wave Impedance in a Wave-guide
201(1)
17.8 Power Flow along a Wave-guide Propagating in TE10 Mode
202(1)
17.9 Cylindrical Wave Guides
203(1)
17.10 Microwave Ovens
204(2)
17.11 Finite-Difference Time-Domain (FDTD) Simulating Microwave Field 17.12 Distributions in Applicators
206(4)
17.12 Microwave Safety
210(1)
17.13 Antenna Applicators
211(3)
17.13.1 Analysis of a Horn Antenna
211(1)
17.13.2 A Uniformly Illuminated Aperture Approximation
211(1)
17.13.3 A Numerical Integration Approximation
212(1)
17.13.4 Other Options
213(1)
Nomenclature
214(2)
Appendix A Derivation of Near Field from a Uniformly Illuminated Rectangular Aperture
216(1)
References
217(1)
18 Quarantine and Biosecurity
218(9)
18.1 Insect Control
218(2)
18.2 The Background to Microwave and Radiofrequency Quarantine
220(3)
18.2.1 Termites as a Case Study
221(2)
18.3 Microbial Control
223(1)
18.4 Conclusions
224(1)
References
224(3)
19 Weed Management
227(32)
19.1 Radio Frequency and Microwave Treatments
230(1)
19.2 Microwave Treatment of Plants
231(2)
19.3 Reinterpretation of Earlier Microwave Weed Experiments
233(2)
19.4 Impact of Microwave Treatment on Soil
235(3)
19.5 Crop Growth Response
238(1)
19.6 Analysis of Potential Crop Yield Response to Microwave Weed Management
239(2)
19.7 The Potential for Including Microwave Weed Control for Herbicide Resistance Management
241(2)
19.8 Conclusion
243(1)
19.9 Nomenclature
243(2)
Appendix A Derivation of the Impact of Weed Infestation and Herbicide Control on Crop Yield Response
245(9)
References
254(5)
20 Treatment of Animal Fodder
259(10)
20.1 Effect of Microwave Treatment on Digestibility
259(4)
20.2 Microstructure Changes
263(1)
20.3 Potential Mitigation of Methane Production
263(1)
20.4 Microwave Treatment of Grains
264(1)
20.5 Effect of Microwave Heating on Crude Protein
265(1)
20.6 Conclusion
266(1)
References
266(3)
21 Wood Modification
269(11)
21.1 Applications of Microwave Modification in Wood Drying
272(3)
21.2 Improving Wood Impregnation
275(1)
21.3 Stress Relief
275(1)
21.4 Industrial Scale Pilot Plant
276(1)
21.5 Pre-treatment for Wood Pulping
277(1)
References
277(3)
22 Microwave Assisted Extraction
280(5)
22.1 Solvent based Extraction of Essential Oils
280(1)
22.2 Solvent Free Extraction of Essential Oils
281(1)
22.3 Microwave Pre-treatment Followed by Conventional Extraction Techniques
282(1)
22.4 Application to Sugar Juice Extraction
282(1)
22.5 Microwave Accelerated Steam Distillation
283(1)
References
284(1)
23 Thermal Processing of Biomass
285(15)
23.1 BioSolids
285(1)
23.2 Biosolids' Composition and Characteristics
286(1)
23.3 Nutrient Value of Biosolids
287(1)
23.4 Current Applications of Biosolids
287(2)
23.5 Thermal Processing of Materials
289(3)
23.5.1 Combustion
289(1)
23.5.2 Gasification
290(1)
23.5.3 Anaerobic Decomposition (Torrefaction and Pyrolysis)
291(1)
23.6 Microwave-assisted Pyrolysis
292(2)
23.7 Biochar
294(1)
References
295(5)
Section 4: Automatic Data Acquisition and Wireless Sensor Networks
24 Section Introduction
300(1)
References
300(1)
25 Data Acquisition
301(21)
25.1 Sensors/Transducers
302(1)
25.2 Power Supply
302(1)
25.3 Accuracy and Its Components
303(2)
25.4 Transducer Output
305(1)
25.5 Signal Conditioning
305(5)
25.5.1 Noise
305(2)
25.5.2 Amplification
307(2)
25.5.3 Offset Adjustment
309(1)
25.6 Digital Data Acquisition
310(4)
25.6.1 Sample and Hold Circuits
310(1)
25.6.2 Aliasing
311(1)
25.6.3 Multiplexing
312(1)
25.6.4 Analogue-to-Digital Conversion
313(1)
25.7 Software
314(1)
25.8 Lightning Protection
315(5)
25.8.1 Some Notes on Earthing Systems
318(2)
References
320(2)
26 Radio Frequency and Microwave Communication Systems
322(15)
26.1 Principles of RF and Microwave Communication
323(1)
26.2 Principles of Wireless Communication
323(1)
26.3 Modulation
324(2)
26.4 Simplex, Half-duplex and Duplex Communication Systems
326(1)
26.5 Digital Communication
327(1)
26.6 Transmission Channels
327(7)
26.6.1 Transmission Lines
328(1)
26.6.2 Loss-Less Transmission Line
329(2)
26.6.3 Lossy Transmission Line
331(1)
26.6.4 Optic Fibre
332(2)
26.7 Wireless Radio Channels
334(2)
References
336(1)
27 Wireless Ad Hoc Sensor Networks
337(8)
27.1 Network Configurations
337(1)
27.2 Open Source Platforms
338(1)
27.2.1 Raspberry Pi
339(1)
27.2.2 Arduino
339(1)
27.3 Mobile Telephone Networks
339(1)
27.4 Power Supply
340(4)
27.4.1 Available Solar Energy
340(4)
References
344(1)
28 RFID Systems
345(5)
28.1 Active, Semi-passive and Passive RFID Tags
345(1)
28.2 Animal Tracking Systems
346(1)
28.3 Environmental Sensor Applications
347(1)
28.4 Near Field Communication
348(1)
References
348(2)
29 Conclusions
350
29.1 Heating Applications
350(2)
29.2 Sensor Applications
352(1)
29.3 Communication Systems
353(1)
29.4 Conclusion
353(1)
References
353
Graham Brodie, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Australia