Muutke küpsiste eelistusi

E-raamat: Microwave Scattering and Emission Models for Users

  • Formaat: 450 pages
  • Ilmumisaeg: 31-Jan-2009
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608070381
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 450 pages
  • Ilmumisaeg: 31-Jan-2009
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608070381

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Electrical engineers Fung (last seen in Texas) and Chen (National Central U., Taiwan) explain interactions between the exploring electromagnetic wave and the surface being sensed when microwaves are used for remote sensing, a practice that has been evolving since it began in the late 1970s. They focus on interpreting signals from the sensing system by understanding the basic interaction between the radiation and the material at the remote location. Topics include the small perturbation surface backscattering model, the simplified integral equation surface backscattering model, the IEM-B surface backscattering model and its bistatic properties, backscatter from multiscale surfaces, the standard moment method, a model for scattering from a low-dielectric layer of Rayleigh scatterers with irregular layer boundaries, and emission models for rough surfaces and a Rayleigh layer with irregular layer boundaries. Annotation ©2010 Book News, Inc., Portland, OR (booknews.com)
Preface xv
Introduction to Microwave Scattering and Emission Models for Users
1(8)
Introduction
1(2)
Organization
3(3)
Model Definitions for Active and Passive Sensing
6(3)
The Small Perturbation Surface Backscattering Model
9(38)
Introduction
9(4)
Shadowing Considerations
11(2)
Isotropic Exponential Correlation with a Gaussian Height Distribution
13(7)
Theoretical Trends for the Exponential Correlation
14(4)
Comparison with Measurements
18(2)
Isotropic Gaussian Correlation with a Gaussian Height Distribution
20(6)
Theoretical Trends for the Gaussian Correlation
20(5)
Comparison with Measurements
25(1)
Isotropic x-Power Correlation with a Gaussian Height Distribution
26(8)
Theoretical Trends for the x-Power Correlation
27(6)
Comparison with Measurements
33(1)
Isotropic x-Exponential Correlation with a Gaussian Height Distribution
34(6)
Theoretical Trends for the x-Exponential Correlation
35(3)
Comparison with Measurements
38(2)
Isotropic Exponential-Like Correlation with a Gaussian Height Distribution
40(4)
Theoretical Trends for the Exponential-Like Correlation
42(1)
Comparison with Measurements
43(1)
Discussion
44(1)
References
45(2)
The Simplified Integral Equation Surface Backscattering Model
47(114)
Introduction
47(6)
The Simplified IEM Model
48(4)
Computer Program Organization
52(1)
Isotropic Exponential Correlation
53(18)
Theoretical Trends in Like Polarized Scattering with Exponential Correlation
54(6)
Theoretical Trends in Cross-Polarized Scattering with Exponential Correlation
60(2)
Comparison with Measurements
62(9)
Isotropic Gaussian Correlation
71(21)
Theoretical Trends in Like Polarized Scattering with Gaussian Correlation
71(6)
Theoretical Trends in Cross-Polarized Scattering with Gaussian Correlation
77(3)
Comparison with Measurements and Simulations
80(12)
Isotropic x-Power Correlation
92(25)
Theoretical Trends in Like Polarized Scattering with x-Power Correlation
92(9)
Theoretical Trends in Cross-Polarized Scattering with x-Power Correlation
101(3)
Comparison with Measurements and Simulations
104(13)
Isotropic x-Exponential Correlation
117(15)
Theoretical Trends in Like Polarized Scattering with x-Exponential Correlation
117(11)
Comparison with Measurements
128(4)
Isotropic Exponential-Like Correlation
132(26)
A Comparison of Spectral Contents
134(2)
Theoretical Trends in Like Polarized Scattering with Exponential-Like Correlation
136(8)
Comparison with Measurements and Simulations
144(14)
Discussion
158(1)
References
159(2)
The IEM-B Surface Backscattering Model
161(106)
Introduction
161(5)
Isotropic Exponential Correlation
166(15)
Theoretical Trends for Like Polarization with Exponential Correlation
167(8)
Comparison with Measurements
175(6)
Isotropic Gaussian Correlation
181(19)
Theoretical Trends for Like Polarization with Gaussian Correlation
182(5)
Comparison with Measurements and Simulations
187(13)
Isotropic x-Power Correlation
200(22)
Theoretical Trends for Like Polarization with x-Power Correlation
201(8)
Comparison with Measurements and Simulations
209(13)
Isotropic x-Exponential Correlation
222(13)
Theoretical Trends for x-Exponential Correlation
222(10)
Comparison with Measurements
232(3)
Isotropic Exponential-Like Correlation
235(22)
A Comparison of Spectral Contents
238(2)
Theoretical Trends for Exponential-Like Correlation
240(8)
Comparison with Measurements and Simulations
248(9)
Illustration of Surface Parameter Selection
257(6)
Shadowing Effect
257(2)
Effect of rms Height
259(1)
Effect of Correlation Length
260(1)
Effect of Dielectric Constant
261(2)
Discussion
263(1)
References
264(3)
Backscattering from Multiscale Surfaces
267(32)
Introduction
267(1)
Backscattering from Multiscale Rough Surfaces
268(15)
Two-Scale Gaussian-Distributed, Gaussian-Correlated Random Surface
269(7)
Three-Scale Gaussian-Distributed, Gaussian-Correlated Random Surface
276(6)
Conclusions on Multiscale Surface
282(1)
Anisotropically Rough Surfaces
283(13)
Anisotropic Exponential Correlation
283(5)
Anisotropic Gaussian Correlation
288(6)
An Anisotropic p-Exponential Correlation
294(2)
Discussion
296(1)
References
297(2)
Bistatic Properties of the IEM-B Surface Scattering Model
299(32)
Introduction
299(1)
The Bistatic Scattering Coefficients
299(3)
Theoretical Behaviors and Model Comparisons
302(18)
Theoretical Behaviors
302(10)
Comparisons with the Simplified IEM Model
312(8)
Comparisons with Bistatic Scattering from Known Surfaces
320(8)
Surface Slope Effects
320(5)
Coherent Contribution in Azimuthal Scattering
325(1)
High-Frequency Effects on Modeling
326(2)
Measurements at EMSL
328(1)
Discussion
328(2)
References
330(1)
The Standard Moment Method
331(28)
Introduction
331(1)
Generation of Digital Surfaces
331(3)
Surface with an Analytic Correlation Function
332(1)
Surface with a Digital Correlation Function
333(1)
Two-Dimensional Surface Scattering Simulation
334(9)
Moment Method Formulation for Dielectric Surfaces
334(9)
Simulation Parameter Selection for Single-Scale Rough Surfaces
343(5)
Effective Window Width Relative to the Gaussian Window
343(2)
Points Per Wavelength or Correlation Length
345(1)
Patch Size
345(3)
Comparisons with Measurements from Known Rough Surfaces
348(8)
Conversion of a Two-Dimensional Simulation to Three Dimensions
348(1)
Comparisons with Measurements
349(7)
Discussion
356(1)
References
357(2)
Model for Scattering from a Low-Dielectric Layer of Rayleigh Scatterers with Irregular Layer Boundaries
359(18)
Introduction
359(1)
Geometry of the Scattering Problem
360(2)
Rayleigh Layer Parameters
362(1)
Theoretical Studies
363(4)
Effects of the Albedo
363(1)
Effects of Optical Depth and Surface Scattering
364(3)
Comparison with Measurements
367(9)
Comparisons with Alfalfa
367(1)
Comparisons with Corn
368(2)
Comparisons with Soybeans
370(2)
Comparisons with Cypress
372(1)
Comparisons with Snow
373(3)
Discussion
376(1)
References
376(1)
Emission Models for Rough Surfaces and a Rayleigh Layer with Irregular Layer Boundaries
377(48)
Introduction
377(1)
Rough Surface Emission
378(1)
Parameter Effects of the Surface Emission Model
378(7)
Effects of Surface Height Variations
378(3)
Effects of Different Correlation Lengths
381(1)
Effects of Surface Dielectric Constant
382(1)
Frequency Dependence
383(2)
Comparison with Measurements
385(2)
Emission from a Soil Surface
385(1)
Emission from Saline Ice
385(2)
Rayleigh Layer over a Rough Surface
387(19)
Parameter Effects of a Rayleigh Layer Model
389(9)
Comparisons with Measurements
398(8)
Emission from a Rayleigh Layer---Numerical Solution
406(17)
Solution of Radiative Transfer Equation
408(3)
Comparisons with Measurements
411(12)
Discussion
423(1)
References
423(2)
About the Authors 425(2)
Index 427
Adrian K. Fung most recently served as the director of the Wave Scattering Research Center, a professor of electrical engineering, and a member of the Academy of Distinguished Scholars at the University of Texas at Arlington. He is also the author of Microwave Scattering and Emission Models and Their Applications (Artech House, 1994) and has coauthored and contributed to several other books in the field. Dr. Fung received his Ph.D. from the University of Kansas. Kun-Shan Chen is the director of the Communications Research Center and holds the distinguished chair professorship at the National Central University in Chung-Li, Taiwan. He is an associate editor of the IEEE Transactions on Geoscience and Remote Sensing and serves as the deputy editor-in-chief of the IEEE J-Star.