Muutke küpsiste eelistusi

E-raamat: Microwave and Wireless Synthesizers: Theory and Design

(FEMTO-ST Institute, CNRS and UBFC, Besançon, France), (Advanced Television Systems Committee, Washington, DC, USA), (University of the Armed Forces, Munich, Germany)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119666110
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 149,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 06-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119666110
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This new edition provides a comprehensive review of the original text with the addition of updated text and illustrations. The book is divided into six chapters beginning with Chapter 1 on loop fundamentals, which provides detailed insight into settlingtime and other characteristics of the loop. Chapter 2 outlines noise and spurious responses of the loops. The linear approach of oscillator phase noise is very detailed and walks the reader through all the important steps and contributions, both inside and outside the loop. In Chapter 3 the authors look at special loops. Here, the DDS technique--explained in detail--should prove most interesting to the reader. Chapter 4 provides a detailed overview of loop components. Chapter 5 provides in-depth details about multiloop synthesizers and Chapter 6 is dedicated to practical synthesizer examples, which combine the techniques outlined in previous chapters"--

The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors 

Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. 

The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today’s technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource:  

  • Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers 
  • Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies 
  • Contains new illustrations, figures, diagrams, and examples 
  • Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle 

Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students. 

Author Biography xii
Preface xvi
Important Notations xx
1 Loop Fundamentals 1(64)
1-1 Introduction to Linear Loops
1(2)
1-2 Characteristics of a Loop
3(4)
1-3 Digital Loops
7(3)
1-4 Type 1 First-Order Loop
10(2)
1-5 Type 1 Second-Order Loop
12(8)
1-6 Type 2 Second-Order Loop
20(7)
1-6-1 Transient Behavior of Digital Loops Using Tri-state Phase Detectors
22(5)
1-7 Type 2 Third-Order Loop
27(9)
1-7-1 Transfer Function of Type 2 Third-Order Loop
28(7)
1-7-2 FM Noise Suppression
35(1)
1-8 Higher-Order Loops
36(4)
1-8-1 Fifth-Order Loop Transient Response
36(4)
1-9 Digital Loops with Mixers
40(4)
1-10 Acquisition
44 (18)
Example 1
48(1)
1-10-1 Pull-in Performance of the Digital Loop
49(3)
1-10-2 Coarse Steering of the VCO as an Acquisition Aid
52(2)
1-10-3 Loop Stability
54(8)
References
62(1)
Suggested Reading
62(3)
2 Almost all About Phase Noise 65(136)
2-1 Introduction to Phase Noise
65(23)
2-1-1 The Clock Signal
65(3)
2-1-2 The Power Spectral Density (PSD)
68(3)
2-1-3 Basics of Noise
71(7)
2-1-4 Phase and Frequency Noise
78(10)
2-2 The Allan Variance and Other Two-Sample Variances
88(12)
2-2-1 Frequency Counters
89(5)
2-2-2 The Two-Sample Variances AVAR, MVAR, and PVAR
94(2)
2-2-3 Conversion from Spectra to Two-Sample Variances
96(4)
2-3 Phase Noise in Components
100(33)
2-3-1 Amplifiers
100(4)
2-3-2 Frequency Dividers
104(8)
2-3-3 Frequency Multipliers
112(5)
2-3-4 Direct Digital Synthesizer (DDS)
117(11)
2-3-5 Phase Detectors
128(4)
2-3-6 Noise Contribution from Power Supplies
132(1)
2-4 Phase Noise in Oscillators
133(20)
2-4-1 Modem View of the Leeson Model
134(10)
2-4-2 Circumventing the Resonator's Thermal Noise
144(2)
2-4-3 Oscillator Hacking
146(7)
2-5 The Measurement of Phase Noise
153(40)
2-5-1 Double-Balanced Mixer Instruments
154(12)
2-5-2 The Cross-Spectrum Method
166(5)
2-5-3 Digital Instruments
171(9)
2-5-4 Pitfalls and Limitations of the Cross-Spectrum Measurements
180(7)
2-5-5 The Bridge (Interferometric) Method
187(3)
2-5-6 Artifacts and Oddities Often Found in the Real World
190(3)
References
193(4)
Suggested Readings
197(4)
3 Special Loops 201(58)
3-1 Introduction
201(1)
3-2 Direct Digital Synthesis Techniques
201(35)
3-2-1 A First Look at Fractional N
202(1)
3-2-2 Digital Waveform Synthesizers
203(17)
3-2-3 Signal Quality
220(15)
3-2-4 Future Prospects
235(1)
3-3 Loops with Delay Line as Phase Comparators
236(1)
3-4 Fractional Division N Synthesizers
237(18)
3-4-1 Example Implementation
240(13)
3-4-2 Some Special Past Patents for Fractional Division N Synthesizers
253(2)
References
255(1)
Bibliography
256(1)
Fractional Division N Readings
256(3)
4 Loop Components 259(212)
4-1 Introduction to Oscillators and Their Mathematical Treatment
259(1)
4-2 The Colpitts Oscillator
259(80)
4-2-1 Linear Approach
260(9)
4-2-2 Design Example for a 350 MHz Fixed-Frequency Colpitts Oscillator
269(13)
4-2-3 Validation Circuits
282(32)
4-2-4 Series Feedback Oscillator
314(5)
4-2-5 2400 MHz MOSFET-Based Push-Pull Oscillator
319(17)
4-2-6 Oscillators for IC Applications
336(1)
4-2-7 Noise in Semiconductors and Circuits
337(2)
4-2-8 Summary
339(1)
4-3 Use of Tuning Diodes
339(6)
4-3-1 Diode Tuned Resonant Circuits
340(4)
4-3-2 Practical Circuits
344(1)
4-4 Use of Diode Switches
345(6)
4-4-1 Diode Switches for Electronic Band Selection
346(1)
4-4-2 Use of Diodes for Frequency Multiplication
347(4)
4-5 Reference Frequency Standards
351(3)
4-5-1 Specifying Oscillators
351(1)
4-5-2 Typical Examples of Crystal Oscillator Specifications
352(2)
4-6 Mixer Applications
354(3)
4-7 Phase Frequency Comparators
357(21)
4-7-1 Diode Rings
357(1)
4-7-2 Exclusive ORs
358(4)
4-7-3 Sample Hold Detectors
362(6)
4-7-4 Edge-Triggered JK Master Slave Flip-Flops
368(1)
4-7-5 Digital Tri-State Comparators
369(9)
4-8 Wideband High-Gain Amplifiers
378(15)
4-8-1 Summation Amplifiers
378(4)
4-8-2 Differential Limiters
382(1)
4-8-3 Isolation Amplifiers
382(5)
4-8-4 Example Implementations
387(6)
4-9 Programmable Dividers
393(28)
4-9-1 Asynchronous Counters
393(1)
4-9-2 Programmable Synchronous Up- Down-Counters
394(11)
4-9-3 Advanced Implementation Example
405(2)
4-9-4 Swallow Counters Dual-Modulus Counters
407(4)
4-9-5 Look-Ahead and Delay Compensation
411(10)
4-10 Loop Filters
421(9)
4-10-1 Passive RC Filters
421(1)
4-10-2 Active RC Filters
422(1)
4-10-3 Active Second-Order Low-Pass Filters
423(3)
4-10-4 Passive LC Filters
426(1)
4-10-5 Spur-Suppression Techniques
427(3)
4-11 Microwave Oscillator Design
430(14)
4-11-1 The Compressed Smith Chart
432(2)
4-11-2 Series or Parallel Resonance
434(1)
4-11-3 Two-Port Oscillator Design
435(9)
4-12 Microwave Resonators
444(17)
4-12-1 SAW Oscillators
445(1)
4-12-2 Dielectric Resonators
445(3)
4-12-3 YIG Oscillators
448(4)
4-12-4 Varactor Resonators
452(3)
4-12-5 Ceramic Resonators
455(6)
References
461(3)
Suggested Readings
464(7)
5 Digital PLL Synthesizers 471(72)
5-1 Multiloop Synthesizers Using Different Techniques
471(6)
5-1-1 Direct Frequency Synthesis
471(2)
5-1-2 Multiple Loops
473(4)
5-2 System Analysis
477(7)
5-3 Low-Noise Microwave Synthesizers
484(34)
5-3-1 Building Blocks
485(4)
5-3-2 Output Loop Response
489(1)
5-3-3 Low Phase Noise References: Frequency Standards
490(3)
5-3-4 Critical Stage
493(10)
5-3-5 Time Domain Analysis
503(5)
5-3-6 Summary
508(4)
5-3-7 Two Commercial Synthesizer Examples
512(6)
5-4 Microprocessor Applications in Synthesizers
518(5)
5-5 Transceiver Applications
523(3)
5-6 About Bits, Symbols, and Waveforms
526(11)
5-6-1 Representation of a Modulated RF Carrier
527(2)
5-6-2 Generation of the Modulated Carrier
529(4)
5-6-3 Putting It all Together
533(2)
5-6-4 Combination of Techniques
535(2)
Acknowledgments
537(3)
References
540(1)
Bibliography and Suggested Reading
540(3)
6 A High-Performance Hybrid Synthesizer 543(16)
6-1 Introduction
543(1)
6-2 Basic Synthesizer Approach
544(4)
6-3 Loop Filter Design
548(8)
6-4 Summary
556(1)
Bibliography
557(2)
A Mathematical Review 559(48)
A-1 Functions of a Complex Variable
559(2)
A-2 Complex Planes
561(7)
A-2-1 Functions in the Complex Frequency Plane
565(3)
A-3 Bode Diagram
568(14)
A-4 Laplace Transform
582(8)
A-4-1 The Step Function
583(1)
A-4-2 The Ramp
584(1)
A-4-3 Linearity Theorem
584(1)
A-4-4 Differentiation and Integration
585(1)
A-4-5 Initial Value Theorem
585(1)
A-4-6 Final Value Theorem
585(1)
A-4-7 The Active Integrator
585(2)
A-4-8 Locking Behavior of the PLL
587(3)
A-5 Low-Noise Oscillator Design
590(4)
A-5-1 Example Implementation
590(4)
A-6 Oscillator Amplitude Stabilization
594(8)
A-7 Very Low Phase Noise VCO for 800 MHZ
602(3)
References
605(2)
B A General-Purpose Nonlinear Approach to the Computation of Sideband Phase Noise in Free-Running Microwave and RF Oscillators 607(38)
B-1 Introduction
607(1)
B-2 Noise Generation in Oscillators
608(1)
B-3 Bias-Dependent Noise Model
609(10)
B-3-1 Bias-Dependent Model
617(1)
B-3-2 Derivation of the Model
617(2)
B-4 General Concept of Noisy Circuits
619(3)
B-4-1 Noise from Linear Elements
620(2)
B-5 Noise Figure of Mixer Circuits
622(2)
B-6 Oscillator Noise Analysis
624(1)
B-7 Limitations of the Frequency-Conversion Approach
625(3)
B-7-1 Assumptions
626(1)
B-7-2 Conversion and Modulation Noise
626(1)
B-7-3 Properties of Modulation Noise
626(1)
B-7-4 Noise Analysis of Autonomous Circuits
627(1)
B-7-5 Conversion Noise Analysis Results
627(1)
B-7-6 Modulation Noise Analysis Results
627(1)
B-8 Summary of the Phase Noise Spectrum of the Oscillator
628(1)
B-9 Verification Examples for the Calculation of Phase Noise in Oscillators Using Nonlinear Techniques
628(13)
B-9-1 Example 1: High-Q Case Microstrip DRO
628(1)
B-9-2 Example 2: 10 MHz Crystal Oscillator
629(1)
B-9-3 Example 3: The 1-GHz Ceramic Resonator VCO
630(2)
B-9-4 Example 4: Low Phase Noise FET Oscillator
632(4)
B-9-5 Example 5: Millimeter-Wave Applications
636(3)
B-9-6 Example 6: Discriminator Stabilized DRO
639(2)
B-10 Summary
641(2)
References
643(2)
C Example of Wireless Synthesizers Using Commercial ICs 645(20)
D MMIC-Based Synthesizers 665(6)
D-1 Introduction
665(3)
Bibliography
668(3)
E Articles on Design of Dielectric Resonator Oscillator 671(30)
E-1 The Design of an Ultra-Low Phase Noise DRO
671(21)
E-1-1 Basic Considerations and Component Selection
671(1)
E-1-2 Component Selection
672(3)
E-1-3 DRO Topologies
675(2)
E-I-4 Small Signal Design Approach for the Parallel Feedback Type DRO
677(6)
E-1-5 Simulated Versus Measured Results
683(2)
E-1-6 Physical Embodiment
685(1)
E-1-7 Acknowledgments
685(3)
E-1-8 Final Remarks
688(4)
References
692(1)
Bibliography
692(1)
E-2 A Novel Oscillator Design with Metamaterial-MoBius Coupling to a Dielectric Resonator
692(7)
E-2-1 Abstract
692(1)
E-2-2 Introduction
693(6)
References
699(2)
F Opto-Electronically Stabilized RF Oscillators 701(60)
F-1 Introduction
701(4)
F-1-1 Oscillator Basics
701(1)
F-1-2 Resonator Technologies
701(3)
F-1-3 Motivation for OEO
704(1)
F-1-4 Operation Principle of the OEO
704(1)
F-2 Experimental Evaluation and Thermal Stability of OEO
705(13)
F-2-1 Experimental Setup
705(3)
F-2-2 Phase Noise Measurements
708(1)
F-2-3 Thermal Sensitivity Analysis of Standard Fibers
709(1)
F-2-4 Temperature Sensitivity Measurements
710(2)
F-2-5 Temperature Sensitivity Improvement with HC-PCF
712(1)
F-2-6 Improve Thermal Stability Versus Phase Noise Degradation
712(1)
F-2-7 Passive Temperature Compensation
713(1)
F-2-8 Improving Effective Q with Raman Amplification
714(4)
F-3 Forced Oscillation Techniques of OEO
718(13)
F-3-1 Analysis of Standard Injection-Locked (IL) Oscillators
718(2)
F-3-2 Analysis of Self-Injection Locked (SIL) Oscillators
720(1)
F-3-3 Experimental Verification of Self-Injection Locked (SIL) Oscillators
721(2)
F-3-4 Analysis of Standard Phase Locked Loop (PLL) Oscillators
723(2)
F-3-5 Analysis of Self Phase Locked Loop (SPLL) Oscillators
725(1)
F-3-6 Experimental Verification of Self-Phase Locked Loop (SPLL) Oscillators
726(2)
F-3-7 Analysis of Self-Injection Locked Phase Locked Loop (SILPLL) Oscillators
728(3)
F-4 SILPLL Based X- and K-Band Frequency Synthesizers
731(11)
F-4-1 X-Band Frequency Synthesizer
732(5)
F-4-2 19inch Rack-Mountable K-Band Frequency Synthesizer
737(5)
F-5 Integrated OEO Realization Using Si-Photonics
742(2)
F-6 Compact OEO Using InP Multi-Mode Semiconductor Laser
744(8)
F-6-1 Structure of Multi-mode InP Laser
744(1)
F-6-2 Multi-mode Laser and Inter-Modal RF Oscillation
745(2)
F-6-3 Self-Forced Frequency Stabilizations
747(5)
F-7 Discussions
752(1)
Acknowledgments
753(1)
References
754(7)
G Phase Noise Analysis, then and Today 761(10)
G-1 Introduction
761(1)
G-2 Large-Signal Noise Analysis
762(7)
References
769(2)
H A Novel Approach to Frequency and Phase Settling Time Measurements on PLL Circuits 771(12)
H-1 Introduction
771(1)
H-2 Settling Time Measurement Overview
771(3)
H-2-1 Theoretical Background of Frequency Settling Time
771(1)
H-2-2 Frequency Settling Measurement in the Past
772(2)
H-3 R&S FSWP Phase Noise Analyzer
774(2)
H-3-1 Phase Noise Analyzer Architecture
774(2)
H-3-2 Typical Test Setup for Settling Time Measurements
776(1)
H-4 Frequency Hopping and Settling Time Measurements in Practice
776(4)
H-4-1 Trigger on Wideband Frequency Hopping Signals
776(1)
H-4-2 Frequency and Phase Settling Time Measurement
777(3)
H-5 Conclusion
780(3)
Index 783
Dr.Ing.habil Ulrich L. Rohde, is a Professor of Technical Informatics, University of the Joint Armed Forces, Munich Germany; member of the staff of other Universities world-wide; partner of Rohde & Schwarz, Munich; and Chairman of the Board of Synergy Microwave Corporation. Formerly Professor of Electrical Engineering at George Washington University and the University of Florida, Dr. Rohde has consulted on numerous communication projects in industry and government, has more than 300 publications, and written many textbooks including this one. He is the author of the first edition of Microwave and Wireless Synthesizers: Theory and Design.

Enrico Rubiola, PhD, is Professor at the Université de Franche Comté (The University of Franche-Comté), Researcher at the Department of Time and Frequency of the CNRS FEMTO-ST Institute, France, and Associated Researcher at INRiM, ItalysNationalMetrology Institute (NMI). He is Founder the Oscillator IMP project, a platform for the measurement of short-term frequency stability and AM/PM noise of oscillators and related components.

Jerry Whitaker is Vice President for Standards Development of the Advanced Television Systems Committee. He also serves as Secretary of the Technology Group on Next Generation Broadcast Television, and is closely involved in work relating to educational programs. He is a Fellow and previous Vice President of the Society of Broadcast Engineers, and a Life Fellow of the Society of Motion Picture and Television Engineers.