Muutke küpsiste eelistusi

E-raamat: Millimeter-Wave GaN Power Amplifier Design

  • Formaat: 340 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819453
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 129,87 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 340 pages
  • Ilmumisaeg: 31-Jan-2022
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781630819453
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book gives you in one comprehensive and practical resource -- everything you need to successfully design modern and sophisticated power amplifiers at mmWave frequencies. The book provides an in-depth treatment of the design methodology for MMIC power amplifiers, then brings you step by step through the various phases of design, from the selection of technology and preliminary architecture considerations, to the effective design of the matching circuits and conversion of electrical-to-electromagnetic models. Detailed figures and numerous practical applications are included to help you gain valuable insights into these technologies and learn to identify the best path to a successful design. Youll be guided through a range of new mmWave power applications that show particular promise to support new 5G systems, while mastering the use of GaN technology that continues to dominate the power mmWave applications due to its high power, gain, and efficiency. This is a valuable resource for power amplifier design engineers, technicians, industry R&D staff, and anyone getting into the area of power MMICs who wants to learn how to design at mmWave frequencies.
Preface ix
Chapter 1 Introduction
1(10)
1.1 Millimeter-Wave GaN
1(1)
1.2 State of the Art
2(1)
1.3 Applications
3(2)
1.4 Cell Phone Connectivity
5(4)
1.5 GaN-Based Power Amplifiers
9(2)
References
10(1)
Chapter 2 Models for GaN Technology
11(60)
2.1 Passive Components
11(14)
2.1.1 Microstrip Line
12(2)
2.1.2 Series Capacitors
14(1)
2.1.3 Shunt Capacitors
15(6)
2.1.4 Interdigital Capacitors
21(1)
2.1.5 Thin-Film Resistors
22(3)
2.2 The GaN HEMT
25(3)
2.3 DC Parameter Anomalies
28(4)
2.3.1 Current Collapse
28(1)
2.3.2 Gate and Drain Lag
29(1)
2.3.3 Poor Pinch-Off
30(1)
2.3.4 Gate Leakage
31(1)
2.4 Temperature Dependence
32(1)
2.5 Unit Cell
32(2)
2.6 Linear GaN HEMT Model
34(3)
2.7 Source and Load Modeling
37(13)
2.7.1 Modeling for Gain
37(4)
2.7.2 Modeling for Power
41(1)
2.7.3 Source/Load as Resonant Networks
42(1)
2.7.4 Drain Load Impedance
43(4)
2.7.5 Gate Source Impedance
47(3)
2.8 Unit Cell Gain and Stability
50(6)
2.8.1 Stabilization of Unit Cells
50(2)
2.8.2 Source Inductor
52(1)
2.8.3 Source Inductor and Gate Resistor
52(1)
2.8.4 Resistor with Shunt Inductor
53(3)
2.9 Nonlinear GaN HEMT Model
56(5)
2.10 EEHEMT Model Validation
61(5)
2.10.1 Linear Performance
61(1)
2.10.2 Prematched Linear Performance
61(2)
2.10.3 Prematched Nonlinear Performance
63(3)
2.11 Model Modification
66(1)
2.12 Summary
67(4)
References
67(4)
Chapter 3 FET-Based Amplifiers
71(54)
3.1 Class A
72(6)
3.1.1 Overdriven Class A
74(4)
3.2 Class B
78(8)
3.2.1 Class AB
82(1)
3.2.2 Overdriven Class B and AB
83(2)
3.2.3 Summary of Operation Classes
85(1)
3.3 Linearity in Amplifiers
86(5)
3.4 Low-Frequency Simulations
91(6)
3.5 Class F Amplifiers
97(10)
3.5.1 Class F Low-Frequency Simulations
100(4)
3.5.2 Class F Large Band
104(3)
3.6 Inverse Class F Amplifiers
107(3)
3.7 Millimeter-Wave Amplifiers
110(15)
3.7.1 Load-Pull Process
110(1)
3.7.2 Numerical Load-Pull
111(1)
3.7.3 Class AB: Load-Pull Results
112(1)
3.7.4 Class F: Load-Pull Results
112(3)
3.7.5 Class A-AB Millimeter-Wave Amplifier
115(3)
3.7.6 Class F Millimeter-Wave Amplifier
118(5)
References
123(2)
Chapter 4 Impedance Matching
125(62)
4.1 Matching Requirements
125(2)
4.2 Reactance Compensation
127(4)
4.3 Matching with Lumped Prototypes
131(12)
4.3.1 L-Section
131(2)
4.3.2 L-Section and Reactance Compensation
133(3)
4.3.3 Cascade of L Sections
136(4)
4.3.4 PI Section
140(1)
4.3.5 T Section
141(2)
4.4 Matching with Distributed Prototypes
143(13)
4.4.1 Single Line Match
143(1)
4.4.2 Single Stub L Section
144(2)
4.4.3 Three Transmission Lines
146(1)
4.4.4 Selected Matching Topologies
147(9)
4.5 Network Frequency Bandwidth
156(1)
4.6 Conversion from Lumped to Distributed Elements
156(5)
4.6.1 Shunt Stubs
156(2)
4.6.2 Transmission Line
158(3)
4.7 Capacitive Loaded Transmission Line
161(1)
4.8 Impedance Inverters
162(6)
4.9 Equalizers
168(2)
4.10 Chip-Level Power Combining
170(17)
4.10.1 Port Impedance
171(2)
4.10.2 Two-Way Combiner
173(3)
4.10.3 Three-Way Combiner
176(4)
4.10.4 Four-Way Combiner
180(4)
4.10.5 Port Impedance
184(1)
References
185(2)
Chapter 5 Power Amplifiers
187(98)
5.1 Design Methodology
187(2)
5.1.1 Design Phase I
187(1)
5.1.2 Design Phase II
188(1)
5.1.3 Design Phase III
188(1)
5.2 Transistor Cell Size
189(2)
5.3 Design Criteria
191(8)
5.3.1 Linear Amplifiers
192(1)
5.3.2 Power Amplifiers
193(1)
5.3.3 High-Efficiency Amplifiers
193(1)
5.3.4 Design of OMN
194(1)
5.3.5 Design of the ISMN
195(3)
5.3.6 Design of Complete Amplifier
198(1)
5.4 Case Study: High-Efficiency Amplifier
199(19)
5.4.1 OMN _04
200(7)
5.4.2 ISMN2_4
207(8)
5.4.3 ISMN1 and IMN
215(3)
5.5 Case Study: Core Amplifier
218(19)
5.5.1 OMN_03
218(7)
5.5.2 ISMN2_03
225(12)
5.6 Case Study: Linear Amplifier
237(10)
5.6.1 OMN Linear Amp
238(2)
5.6.2 ISMN2 Linear Amp
240(1)
5.6.3 Optimization Process
241(6)
5.7 Case Study: 5G New Radio (NR) Amplifier
247(5)
5.8 EM Analysis Methodology
252(21)
5.8.1 EE-to-EM Conversion of 3:1 Combiners
255(10)
5.8.2 Shunt Capacitors
265(1)
5.8.3 Fringing Capacitance
265(1)
5.8.4 EE to EM Conversion of 6:1 Circuits
266(1)
5.8.5 EM Conversion of 2:6 Circuits
266(3)
5.8.6 Fine-Tuning the EM Circuit Block
269(1)
5.8.7 Large-Width Transmission Lines
270(3)
5.9 Multistage Stability Analysis
273(12)
5.9.1 K-Factor and μ-Factor
273(1)
5.9.2 Loop Stability
273(1)
5.9.3 Odd-Mode Stability
274(2)
5.9.4 MMIC Stability Example
276(7)
References
283(2)
Chapter 6 State-of-the-Art MMIC Amplifiers
285(14)
6.1 E-Band Amplifier
285(1)
6.2 F-Band Amplifier
286(3)
6.3 W-Band Amplifier
289(2)
6.4 Ka-Band Class F Amplifier
291(2)
6.5 GaN/Si Ka-Band Amplifier
293(1)
6.6 Ka-Band High-Efficiency Amplifier
294(1)
6.7 Ka-Band Doherty Amplifier
295(4)
References
298(1)
APPENDIX A Bias Filters
299(12)
A.1 In-Band Filters
299(4)
A.2 In-Band/Out-of-Band Filters
303(1)
A.3 Filtering Below 1 GHz
304(4)
A.4 MMIC Assembling for Evaluation
308(3)
Reference
309(2)
APPENDIX B Evaluation of MMICs
311(8)
B.1 Large Signal Measurements
311(3)
B.1.1 Calibration
312(1)
B.1.2 Evaluation
313(1)
B.2 Two-Tone Linearity Test
314(1)
B.3 AM-to-PM
315(2)
B.4 EVM and ACPR
317(2)
References
318(1)
About the Author 319(2)
Index 321