Muutke küpsiste eelistusi

E-raamat: Minimization of Welding Distortion and Buckling: Modelling and Implementation

Edited by (Ph.D, Senior Software Architect, Autodesk, State College, PA, USA)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 172,90 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Welding is a cost-effective and flexible method of fabricating large structures, but drawbacks such as residual stress, distortion and buckling must be overcome in order to optimize structural performance. Minimization of welding distortion and buckling provides a systematic overview of the methods of minimizing distortion and buckling in welded structures. 

Following an introductory chapter, Part 1 focuses on understanding welding stress and distortion, with chapters on such topics as computational welding mechanics, modeling the effect of phase transformations on welding stress and distortion and using computationally efficient reduced-solution methods to understand welding distortion. Part 2 covers different methods of minimizing welding distortion. Chapters discuss methods such as differential heating for minimizing distortion in welded stiffeners, dynamic thermal tensioning, reverse-side heating and ways of minimizing buckling such as weld cooling and hybrid laser arc welding.



Welding is a cost-effective and flexible method of fabricating large structures, but drawbacks such as residual stress, distortion and buckling must be overcome in order to optimize structural performance. Minimization of welding distortion and buckling provides a systematic overview of the methods of minimizing distortion and buckling in welded structures.

Contributor contact details ix
Part I Understanding welding residual stress and distortion
1 Introduction to welding residual stress and distortion
3(19)
P. Michaleris
1.1 Types of welding distortion
3(1)
1.2 Formation of welding distortion
4(6)
1.3 Distortion control methods
10(10)
1.4 Book outline
20(1)
1.5 References
20(2)
2 Understanding welding stress and distortion using computational welding mechanics
22(56)
L. E. Lindgren
2.1 Introduction
22(1)
2.2 The Satoh test
22(4)
2.3 Thermomechanical analysis of welding problems
26(3)
2.4 Eulerian and Lagrangian reference frames
29(2)
2.5 Nonlinear heat conduction
31(5)
2.6 Nonlinear deformation
36(5)
2.7 Finite-element techniques in computational welding mechanics (CWM)
41(5)
2.8 Heat input models
46(12)
2.9 Material models
58(8)
2.10 References
66(12)
3 Modelling the effects of phase transformations on welding stress and distortion
78(21)
J. A. Francis
P. J. Withers
3.1 Introduction
78(1)
3.2 Types of transformation
79(5)
3.3 Transformation strains
84(2)
3.4 Equilibrium phase diagrams
86(3)
3.5 Continuous cooling transformation (CCT) diagrams
89(2)
3.6 Significance of transformation temperature
91(1)
3.7 Metallurgical zones in welded joints
92(1)
3.8 Effects of phase transformations on residual stresses in welds
93(2)
3.9 Transformation plasticity
95(1)
3.10 Current status of weld modelling
95(2)
3.11 References
97(2)
4 Modelling welding stress and distortion in large structures
99(25)
L. Zhang
4.1 Introduction
99(1)
4.2 Three-dimensional applied plastic strain methods
100(12)
4.3 Application on a large structure
112(10)
4.4 Conclusions
122(1)
4.5 References
122(2)
5 Using computationally efficient, reduced-solution methods to understand welding distortion
124(45)
T.G.F. Gray
D. Camilleri
5.1 Introduction
124(1)
5.2 Context and rationale for reduced-solution methods
125(5)
5.3 Computationally efficient solutions based on mismatched thermal strain (MTS) and transverse contraction strain (TCS) algorithms
130(5)
5.4 Verification of MTS and TCS algorithms
135(5)
5.5 Multiple welds
140(4)
5.6 Fillet welds
144(3)
5.7 Hybrid and stepwise strategies
147(4)
5.8 Selected case studies
151(9)
5.9 Future trends
160(3)
5.10 Sources of further information and advice
163(1)
5.11 References
164(5)
Part II Minimizing welding distortion
6 Minimization of bowing distortion in welded stiffeners using differential heating
169(17)
M. V. Deo
6.1 Introduction
169(1)
6.2 Welding-induced residual stress and bowing distortion
170(2)
6.3 Mitigation of welding-induced bowing distortion
172(2)
6.4 Experimental verification of transient differential heating
174(4)
6.5 Results
178(5)
6.6 Conclusions
183(1)
6.7 References
184(2)
7 Minimizing buckling distortion in welding by thermal tensioning methods
186(28)
W. Li
J. Xu
7.1 Introduction
186(1)
7.2 A simplified finite-element model
187(8)
7.3 The dynamic thermal tensioning method
195(10)
7.4 Mitigating buckling distortion using the dynamic thermal tensioning method
205(5)
7.5 Conclusions
210(1)
7.6 References
211(3)
8 Minimizing buckling distortion in welding by weld cooling
214(27)
J. Li
Q.Y. Shi
8.1 Introduction
214(1)
8.2 Welding with intensive trailing cooling, the dynamically controlled low-stress no-distortion (DC-LSND) method
215(11)
8.3 Mechanism of the DC-LSND method
226(11)
8.4 Limitations and industry application
237(2)
8.5 Conclusions
239(1)
8.6 References
240(1)
9 Minimizing buckling distortion in welding by hybrid laser-arc welding
241(32)
S. M. Kelly
R. P. Martukanitz
E. W. Reutzel
9.1 Introduction
241(1)
9.2 Laser beam welding
242(4)
9.3 Hybrid laser-are welding (HLAW)
246(1)
9.4 Hybrid laser-are welding for reducing distortion in marine construction
247(21)
9.5 Conclusions
268(2)
9.6 References
270(3)
10 Minimizing angular distortion in welding by reverse-side heating
273(16)
M. Mochizuki
10.1 Introduction
273(1)
10.2 Experimental
274(3)
10.3 Mechanism of reduction in welding distortion
277(8)
10.4 Conclusions
285(1)
10.5 Acknowledgments
285(1)
10.6 References
286(3)
Index 289
Pan Michaleris is a Senior Software Architect at Autodesk Inc. He received his Ph.D. in 1994 in theoretical and applied mechanics at the University of Illinois at Urbana-Champaign, and was a senior research engineer at the Edison Welding Institute (EWI) until 1997. Pan served as a professor in the Mechanical and Nuclear Engineering Department at the Pennsylvania State University from 1997-2016. In 2012, Michaleris founded and served as both president and lead developer at Pan Computing LLC. Pan Computing was a software development and commercialization company for physics-based modeling of additive manufacturing processes. Pan Computing was acquired by Autodesk Inc. in 2016. His areas of interest include computational mechanics, finite element methods, manufacturing process modeling, and residual stress and distortion. Michaleris authored Minimization of Welding Distortion and Buckling and in addition to more than 80 peer reviewed journal and proceedings papers. He formerly served on the editorial board of Science and Technology in Welding and Joining, and was an associate editor for Welding Journal.