|
|
xiii | |
|
|
xv | |
Preface |
|
xvii | |
|
|
1 | (26) |
|
|
1 | (1) |
|
1.2 Definition of Missing Values |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.4 Missing Data Mechanism |
|
|
4 | (3) |
|
1.5 Problems with Complete-Case Analysis |
|
|
7 | (2) |
|
|
9 | (4) |
|
1.7 Basic Statistical Concepts |
|
|
13 | (6) |
|
|
19 | (2) |
|
|
21 | (2) |
|
|
23 | (4) |
|
|
27 | (24) |
|
|
27 | (2) |
|
2.2 Adjustment Cell Method |
|
|
29 | (1) |
|
2.3 Response Propensity Model |
|
|
29 | (3) |
|
|
32 | (5) |
|
2.5 Impact of Weights on Population Mean Estimates |
|
|
37 | (2) |
|
|
39 | (5) |
|
2.6.1 Post-Stratification Weights |
|
|
39 | (1) |
|
|
40 | (2) |
|
2.6.3 Post-stratified Estimator |
|
|
42 | (2) |
|
|
44 | (1) |
|
2.8 Alternative to Weighted Analysis |
|
|
45 | (2) |
|
2.9 Inverse Probability Weighting |
|
|
47 | (1) |
|
|
47 | (2) |
|
|
49 | (2) |
|
|
51 | (26) |
|
3.1 Generation of Plausible Values |
|
|
53 | (2) |
|
|
55 | (4) |
|
3.2.1 Connection with Weighting |
|
|
57 | (1) |
|
3.2.2 Bayesian Modification |
|
|
58 | (1) |
|
3.3 Model Based Imputation |
|
|
59 | (4) |
|
|
63 | (4) |
|
3.5 Sequential Regression Imputation |
|
|
67 | (8) |
|
|
69 | (2) |
|
3.5.2 Handling Restrictions |
|
|
71 | (2) |
|
3.5.3 Model Fitting Issues |
|
|
73 | (2) |
|
|
75 | (1) |
|
|
76 | (1) |
|
|
77 | (22) |
|
|
77 | (1) |
|
|
77 | (2) |
|
4.3 Multivariate Hypothesis Testing |
|
|
79 | (1) |
|
4.4 Combining Test Statistics |
|
|
80 | (2) |
|
4.5 Basic Theory of Multiple Imputation |
|
|
82 | (1) |
|
4.6 Extended Combining Rules |
|
|
83 | (3) |
|
|
84 | (1) |
|
4.6.2 Nonnormal Approximation |
|
|
85 | (1) |
|
4.7 Some Practical Issues |
|
|
86 | (3) |
|
4.7.1 Number of Imputations |
|
|
86 | (1) |
|
|
87 | (1) |
|
4.7.3 To Impute or Not to Impute |
|
|
88 | (1) |
|
|
89 | (2) |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.9 Example: St. Louis Risk Research Project |
|
|
91 | (4) |
|
|
95 | (1) |
|
|
95 | (4) |
|
|
99 | (22) |
|
|
99 | (4) |
|
|
99 | (4) |
|
5.2 Revisiting St. Louis Risk Research Example |
|
|
103 | (2) |
|
|
105 | (8) |
|
5.3.1 Complete Data Analysis |
|
|
106 | (1) |
|
5.3.1.1 Partitioning of Sum of Squares |
|
|
106 | (2) |
|
5.3.1.2 Regression Formulation |
|
|
108 | (1) |
|
5.3.2 ANOVA with Missing Values |
|
|
108 | (1) |
|
5.3.2.1 Combining Sums of Squares |
|
|
109 | (1) |
|
5.3.2.2 Regression Formulation with Missing Values |
|
|
110 | (1) |
|
|
110 | (2) |
|
|
112 | (1) |
|
5.4 Survival Analysis Example |
|
|
113 | (4) |
|
|
117 | (1) |
|
|
117 | (4) |
|
6 Longitudinal Analysis with Missing Values |
|
|
121 | (24) |
|
|
121 | (3) |
|
6.2 Imputation Model Assumption |
|
|
124 | (6) |
|
6.2.1 Completed as Randomized |
|
|
126 | (2) |
|
6.2.2 Completed as Control |
|
|
128 | (1) |
|
6.2.3 Completed as Stable |
|
|
129 | (1) |
|
|
130 | (5) |
|
6.3.1 Completed as Randomized: Maximum Likelihood Analysis |
|
|
130 | (3) |
|
6.3.2 Multiple Imputation: Completed as Randomized |
|
|
133 | (2) |
|
6.3.3 Multiple Imputation: Completed as Control |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (3) |
|
|
139 | (3) |
|
|
142 | (1) |
|
|
143 | (2) |
|
7 Nonignorable Missing Data Mechanisms |
|
|
145 | (10) |
|
|
145 | (1) |
|
|
146 | (2) |
|
7.3 Inference under Selection Model |
|
|
148 | (3) |
|
7.4 Inference under Mixture Model |
|
|
151 | (1) |
|
|
151 | (1) |
|
7.6 Practical Considerations |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (20) |
|
|
155 | (4) |
|
8.2 Combining Information from Multiple Data Sources |
|
|
159 | (1) |
|
8.3 Bayesian Inference from Finite Population |
|
|
160 | (3) |
|
|
163 | (2) |
|
8.5 Disclosure Limitation |
|
|
165 | (4) |
|
|
169 | (1) |
|
|
170 | (5) |
|
|
175 | (12) |
|
9.1 Uncongeniality and Multiple Imputation |
|
|
175 | (2) |
|
9.2 Multiple Imputation for Complex Surveys |
|
|
177 | (2) |
|
9.3 Missing Values by Design |
|
|
179 | (1) |
|
9.4 Replication Method for Variance Estimation |
|
|
180 | (2) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
184 | (3) |
Bibliography |
|
187 | (18) |
Index |
|
205 | |