Muutke küpsiste eelistusi

E-raamat: Mixed-Norm Inequalities and Operator Space $L_p$ Embedding Theory

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 103,43 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The authors prove a noncommutative analogue of this inequality for sums of free random variables over a given von Neumann subalgebra. This formulation leads to new classes of noncommutative function spaces which appear in quantum probability as square functions, conditioned square functions and maximal functions.
Introduction 1(12)
0.1 Noncommutative function spaces
2(1)
0.2 Amalgamated Lp spaces
3(2)
0.3 Conditional Lp spaces
5(2)
0.4 Intersection spaces
7(1)
0.5 Mixed-norm inequalities
8(1)
0.6 Operator space Lp embeddings
9(4)
Chapter 1 Noncommutative integration 13(14)
1.1 Noncommutative Lp spaces
13(4)
1.2 Pisier's vector-valued Lp spaces
17(3)
1.3 The spaces Lrp(M, E) and Lcp(M, E)
20(7)
Chapter 2 Amalgamated Lp spaces 27(16)
2.1 Haagerup's construction
29(2)
2.2 Triangle inequality on partial difference infinity K
31(7)
2.3 A metric structure on the solid K
38(5)
Chapter 3 An interpolation theorem 43(28)
3.1 Finite von Neumann algebras
44(4)
3.2 Conditional expectations on partial difference infinity K
48(7)
3.3 General von Neumann algebras I
55(6)
3.4 General von Neumann algebras II
61(5)
3.5 Proof of the main interpolation theorem
66(5)
Chapter 4 Conditional Lp spaces 71(8)
4.1 Duality
72(1)
4.2 Conditional Linfinity spaces
73(1)
4.3 Interpolation results and applications
74(5)
Chapter 5 Intersections of Lp spaces 79(28)
5.1 Free Rosenthal inequalities
79(4)
5.2 Estimates for BMO type norms
83(16)
5.3 Interpolation of 2-term intersections
99(4)
5.4 Interpolation of 4-term intersections
103(4)
Chapter 6 Flictorisation of Jnp,q(M, E) 107(12)
6.1 Amalgamated tensors
108(4)
6.2 Conditional expectations and ultraproducts
112(3)
6.3 Factorisation of the space Jninfinity,1(M, E)
115(4)
Chapter 7 Mixed-norm inequalities 119(10)
7.1 Embedding of Jnp,q(M, E) into Lp (A; lnq)
119(7)
7.2 Asymmetric Lp spaces and noncommutative (Σpq)
126(3)
Chapter 8 Operator space Lp embeddings 129(24)
8.1 Embedding Schatten classes
129(3)
8.2 Embedding into the hyperfinite factor
132(12)
8.3 Embedding for general von Neumann algebras
144(9)
Bibliography 153