|
|
1 | (16) |
|
|
1 | (5) |
|
1.2 From Hodge Toward Twistor |
|
|
6 | (2) |
|
1.3 Mixed Twistor D-Modules |
|
|
8 | (9) |
|
1.3.1 Pure Twistor D-Modules |
|
|
8 | (1) |
|
1.3.2 Mixed Twistor D-Modules |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.3.4 Admissible Variation of Mixed Twistor Structure |
|
|
10 | (1) |
|
1.3.5 Duality and Real Structure |
|
|
11 | (6) |
|
Part I Gluing and Specialization of R-Triples |
|
|
|
|
17 | (32) |
|
|
19 | (20) |
|
|
19 | (1) |
|
2.1.2 Strict Specializability for R-Modules |
|
|
20 | (3) |
|
|
23 | (3) |
|
|
26 | (2) |
|
2.1.5 Integrable R-Triple |
|
|
28 | (2) |
|
2.1.6 Smooth R-triples and Some Functorial Properties |
|
|
30 | (3) |
|
2.1.7 Variation of Twistor Structure |
|
|
33 | (2) |
|
|
35 | (2) |
|
2.1.9 Other Basic Examples of Smooth R-Triples of Rank One |
|
|
37 | (2) |
|
2.2 Deformation Associated to Nilpotent Morphisms |
|
|
39 | (5) |
|
2.2.1 Twistor Nilpotent Orbit in R-Triple |
|
|
39 | (4) |
|
|
43 | (1) |
|
|
44 | (5) |
|
|
44 | (1) |
|
2.3.2 The Associated Twistor Nilpotent Orbit |
|
|
45 | (1) |
|
|
46 | (3) |
|
3 Canonical Prolongations |
|
|
49 | (22) |
|
3.1 Canonical Prolongations of R(*t)-Modules |
|
|
50 | (10) |
|
3.1.1 Strictly Specializable R(*t)-Modules |
|
|
50 | (1) |
|
3.1.2 The R-Module M[ *t] |
|
|
50 | (3) |
|
3.1.3 The R-Module M[ !t] |
|
|
53 | (4) |
|
|
57 | (1) |
|
|
57 | (1) |
|
3.1.6 Canonical Prolongations of R-Modules |
|
|
58 | (2) |
|
3.2 Canonical Prolongations of R-Triples |
|
|
60 | (5) |
|
3.2.1 Canonical Prolongations of R(*t)-Triples |
|
|
60 | (3) |
|
|
63 | (1) |
|
3.2.3 Canonical Prolongations of R-Triples |
|
|
63 | (1) |
|
3.2.4 Compatibility of Canonical Prolongation with Push-Forward |
|
|
64 | (1) |
|
3.3 Canonical Prolongations Across Hypersurfaces |
|
|
65 | (6) |
|
3.3.1 Canonical Prolongations Across Holomorphic Functions |
|
|
65 | (3) |
|
3.3.2 Canonical Prolongations Across Hypersurfaces |
|
|
68 | (3) |
|
4 Gluing and Specialization of R-Triples |
|
|
71 | (32) |
|
4.1 Beilinson Functors for R-Modules |
|
|
72 | (8) |
|
4.1.1 The Functors Πa,b, Π!a,b, Π*a,b and Π*!a,b for R-Modules |
|
|
72 | (2) |
|
4.1.2 Another Description |
|
|
74 | (1) |
|
4.1.3 The Induced Morphism |
|
|
75 | (1) |
|
4.1.4 Compatibility with the Push-Forward |
|
|
76 | (1) |
|
4.1.5 The Functors ψ(a) and Ξ(a) for R(*t)-Modules |
|
|
77 | (1) |
|
4.1.6 Beilinson Functors for R-Modules |
|
|
78 | (1) |
|
4.1.7 Beilinson Functors Along General Holomorphic Functions |
|
|
79 | (1) |
|
4.2 Beilinson Functors for R-Triples |
|
|
80 | (9) |
|
4.2.1 Functors Πa,b, Π*a,b and Π!a,b for R(*t)-Triple |
|
|
80 | (2) |
|
4.2.2 Functors Π*!a,b, ψ(a) and Ξ(a) |
|
|
82 | (2) |
|
4.2.3 Vanishing Cycle Functor for R-Triple |
|
|
84 | (1) |
|
4.2.4 Gluing of R-Triples |
|
|
85 | (1) |
|
4.2.5 Dependence on the Function t |
|
|
86 | (1) |
|
4.2.6 Compatibility with Push-Forward |
|
|
87 | (1) |
|
4.2.7 Beilinson Functors Along General Holomorphic Functions |
|
|
88 | (1) |
|
4.3 Comparison of the Nearby Cycle Functors |
|
|
89 | (7) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
4.3.4 Construction of Isomorphisms |
|
|
92 | (3) |
|
|
95 | (1) |
|
4.4 Admissible Specializability |
|
|
96 | (7) |
|
|
96 | (3) |
|
|
99 | (1) |
|
4.4.3 Admissible Specializability Along Hypersurfaces |
|
|
100 | (3) |
|
5 Gluing of Good-KMS Smooth R-Triples |
|
|
103 | (40) |
|
5.1 Good-KMS Smooth R-Modules |
|
|
104 | (4) |
|
5.1.1 Good-KMS Meromorphic Prolongment |
|
|
104 | (1) |
|
5.1.2 Induced Bundles on the Intersection of Divisors |
|
|
104 | (1) |
|
5.1.3 Hukuhara-Levelt-Turrittin Type Decomposition |
|
|
105 | (1) |
|
|
106 | (1) |
|
5.1.5 Reduction with Respect to Stokes Structure |
|
|
107 | (1) |
|
5.2 Compatibility of Filtrations |
|
|
108 | (4) |
|
5.2.1 Compatibility with Hukuhara-Levelt-Turrittin Type Decomposition |
|
|
108 | (1) |
|
5.2.2 Extension of Good-KMS Smooth R-Modules |
|
|
109 | (1) |
|
5.2.3 Compatibility with KMS Structure |
|
|
110 | (1) |
|
|
111 | (1) |
|
5.3 Canonical Prolongations of Good-KMS Smooth R-Modules |
|
|
112 | (7) |
|
|
112 | (1) |
|
5.3.2 Uniqueness and Lemma 5.3.2 |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
115 | (1) |
|
|
116 | (2) |
|
|
118 | (1) |
|
|
119 | (1) |
|
5.4 Strict Specializability Along Monomial Functions |
|
|
119 | (7) |
|
|
119 | (1) |
|
|
120 | (1) |
|
|
121 | (1) |
|
5.4.4 Regular and Pure Case |
|
|
122 | (2) |
|
5.4.5 Regular and Filtered Case |
|
|
124 | (1) |
|
5.4.6 Good Irregular Case with Unique Irregular Value |
|
|
125 | (1) |
|
5.4.7 End of the Proof of Proposition 5.4.3 |
|
|
126 | (1) |
|
5.5 Good-KMS Smooth R-Triple |
|
|
126 | (6) |
|
5.5.1 Reduction with Respect to Stokes Structure |
|
|
126 | (2) |
|
|
128 | (1) |
|
5.5.3 Canonical Prolongations |
|
|
129 | (1) |
|
5.5.4 Variant of Beilinson Functors |
|
|
130 | (1) |
|
5.5.5 Growth Order and the Compatibility of Stokes Filtrations |
|
|
131 | (1) |
|
5.5.6 I-Good-KMS Smooth R-Triples |
|
|
132 | (1) |
|
5.6 Gluing of Good-KMS Smooth R-Triples on the Intersections |
|
|
132 | (11) |
|
|
133 | (1) |
|
5.6.2 Construction of the Functor |
|
|
134 | (4) |
|
|
138 | (1) |
|
5.6.4 Dependence on Coordinate Systems |
|
|
138 | (5) |
|
Part II Mixed Twistor D-Modules |
|
|
|
6 Preliminary for Relative Monodromy Filtrations |
|
|
143 | (26) |
|
6.1 Relative Monodromy Filtrations |
|
|
144 | (3) |
|
6.1.1 Definition and Basic Properties |
|
|
144 | (2) |
|
6.1.2 Canonical Decomposition |
|
|
146 | (1) |
|
|
146 | (1) |
|
6.1.4 Functoriality for Tensor Product and Duality |
|
|
147 | (1) |
|
6.2 Transfer of Filtrations |
|
|
147 | (6) |
|
|
147 | (1) |
|
6.2.2 Inheritance of Relative Monodromy Filtration |
|
|
148 | (1) |
|
6.2.3 Transfer of Filtration |
|
|
149 | (2) |
|
|
151 | (1) |
|
6.2.5 Duality and Tensor Product |
|
|
151 | (2) |
|
6.3 Pure and Mixed Objects |
|
|
153 | (16) |
|
|
153 | (3) |
|
|
156 | (1) |
|
6.3.3 S-Decomposability and Strict Support |
|
|
156 | (2) |
|
6.3.4 A Category LA(Λ1, Λ2) |
|
|
158 | (1) |
|
6.3.5 Pure Objects in LA(Λ1, Λ2) |
|
|
158 | (2) |
|
6.3.6 Mixed Objects in LA(Λ1, Λ2) |
|
|
160 | (1) |
|
|
161 | (1) |
|
|
162 | (1) |
|
6.3.9 Another Description of MLA(Λ1, Λ2) |
|
|
163 | (2) |
|
6.3.10 Commutativity of the Transfer |
|
|
165 | (1) |
|
6.3.11 Canonical Prolongations |
|
|
166 | (3) |
|
7 Mixed Twistor D-Modules |
|
|
169 | (26) |
|
7.1 Admissible Specializability of Pre-mixed Twistor D-Modules |
|
|
170 | (21) |
|
7.1.1 Pre-mixed Twistor D-Modules |
|
|
170 | (1) |
|
7.1.2 Push-Forward by Projective Morphisms |
|
|
171 | (4) |
|
7.1.3 Admissible Specializability for Pre-mixed Twistor D-Modules |
|
|
175 | (5) |
|
7.1.4 Admissible Specializability and Push-Forward |
|
|
180 | (1) |
|
7.1.5 Gluing Along a Coordinate Function |
|
|
181 | (1) |
|
|
182 | (5) |
|
|
187 | (2) |
|
7.1.8 Restriction of KMS-Spectrum |
|
|
189 | (2) |
|
7.2 Mixed Twistor D-Modules |
|
|
191 | (4) |
|
|
191 | (1) |
|
7.2.2 Some Basic Properties |
|
|
192 | (2) |
|
|
194 | (1) |
|
8 Infinitesimal Mixed Twistor Modules |
|
|
195 | (26) |
|
|
196 | (5) |
|
8.1.1 Pure Twistor Structure |
|
|
196 | (2) |
|
8.1.2 Mixed Twistor Structure |
|
|
198 | (1) |
|
|
199 | (1) |
|
8.1.4 Some Conditions for the Existence of Relative Monodromy Filtration |
|
|
200 | (1) |
|
8.2 Polarizable Mixed Twistor Structure |
|
|
201 | (5) |
|
|
201 | (2) |
|
8.2.2 Proof of Proposition 8.2.1 |
|
|
203 | (2) |
|
8.2.3 Proof of Proposition 8.2.3 |
|
|
205 | (1) |
|
8.2.4 Proof of Lemmas 8.2.4 and 8.2.5 |
|
|
206 | (1) |
|
8.3 Infinitesimal Mixed Twistor Modules |
|
|
206 | (8) |
|
|
206 | (1) |
|
|
207 | (1) |
|
8.3.3 Canonical Filtrations |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
210 | (1) |
|
|
211 | (1) |
|
8.3.7 Transfer for Pre-IMTM |
|
|
211 | (1) |
|
8.3.8 Existence of Relative Monodromy Filtration in a Special Case |
|
|
212 | (1) |
|
8.3.9 End of the Proof of Proposition 8.3.14 |
|
|
213 | (1) |
|
8.4 Nearby Cycle Functor Along a Monomial Function |
|
|
214 | (2) |
|
8.4.1 Beilinson IMTM and Its Deformation |
|
|
214 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
8.5 Twistor Version of a Theorem of Kashiwara |
|
|
216 | (1) |
|
8.5.1 A Purity Theorem (Special Case) |
|
|
217 | (1) |
|
8.5.2 Proof of Proposition 8.5.1 |
|
|
217 | (1) |
|
|
217 | (4) |
|
8.6.1 Integrable Mixed Twistor Structure |
|
|
217 | (1) |
|
8.6.2 Integrable Polarizable Mixed Twistor Structure |
|
|
218 | (1) |
|
8.6.3 Infinitesimal Mixed Twistor Module |
|
|
218 | (3) |
|
9 Admissible Mixed Twistor Structures and Their Variants |
|
|
221 | (26) |
|
9.1 Admissible Mixed Twistor Structure |
|
|
222 | (7) |
|
9.1.1 Mixed Twistor Structure on (X, D) |
|
|
222 | (1) |
|
|
222 | (1) |
|
9.1.3 Admissibility in the Smooth Divisor Case |
|
|
223 | (1) |
|
9.1.4 Admissibility in the Normal Crossing Case |
|
|
224 | (1) |
|
9.1.5 Category of Admissible MTS |
|
|
225 | (2) |
|
|
227 | (2) |
|
|
229 | (1) |
|
|
229 | (1) |
|
9.2 Admissible Polarizable Mixed Twistor Structure |
|
|
229 | (6) |
|
|
229 | (2) |
|
9.2.2 Category of Admissible (w, Λ)-Polarizable Mixed Twistor Structure |
|
|
231 | (1) |
|
9.2.3 An Equivalent Condition |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
234 | (1) |
|
|
235 | (6) |
|
|
235 | (2) |
|
9.3.2 Category of Admissible IMTM |
|
|
237 | (2) |
|
|
239 | (1) |
|
9.3.4 A Remark on Nearby Cycle Functors |
|
|
240 | (1) |
|
9.4 Specialization of Admissible Mixed Twistor Structure |
|
|
241 | (3) |
|
|
241 | (1) |
|
|
241 | (1) |
|
9.4.3 Proof of Proposition 9.4.1 |
|
|
242 | (2) |
|
|
244 | (3) |
|
9.5.1 Admissible Mixed Twistor Structure |
|
|
244 | (1) |
|
9.5.2 Admissible Polarizable Mixed Twistor Structure |
|
|
245 | (1) |
|
|
246 | (1) |
|
10 Good Mixed Twistor D-Modules |
|
|
247 | (24) |
|
|
248 | (8) |
|
|
248 | (2) |
|
10.1.2 Canonical Prolongments |
|
|
250 | (1) |
|
10.1.3 Beilinson Functors |
|
|
251 | (3) |
|
10.1.4 Nearby Cycle Functors, Maximal Functors and Vanishing Cycle Functors |
|
|
254 | (2) |
|
10.1.5 Gluing Along a Monomial Function |
|
|
256 | (1) |
|
10.2 Good Pre-Mixed Twistor D-Module |
|
|
256 | (7) |
|
10.2.1 Weak Admissible Specializability |
|
|
256 | (1) |
|
|
257 | (3) |
|
|
260 | (3) |
|
|
263 | (1) |
|
10.3 Good Mixed Twistor D-Modules |
|
|
263 | (5) |
|
|
263 | (1) |
|
|
264 | (1) |
|
10.3.3 Localizability of Good Pre-mixed Twistor D-Modules |
|
|
264 | (1) |
|
10.3.4 Proof of Theorem 10.3.1 and Proposition 10.3.2 |
|
|
265 | (2) |
|
10.3.5 Proof of Lemma 10.3.4 |
|
|
267 | (1) |
|
|
268 | (3) |
|
|
271 | (26) |
|
11.1 Expression as Gluing of Admissible Mixed Twistor Structure |
|
|
272 | (7) |
|
|
272 | (1) |
|
11.1.2 Cell of Mixed Twistor D-Modules |
|
|
273 | (1) |
|
11.1.3 Expression as a Gluing |
|
|
273 | (2) |
|
|
275 | (1) |
|
11.1.5 Admissibility of Cells |
|
|
276 | (3) |
|
|
279 | (6) |
|
11.2.1 Localization Along Functions |
|
|
279 | (1) |
|
11.2.2 Localization Along Hypersurfaces |
|
|
280 | (2) |
|
11.2.3 The Underlying D-Modules |
|
|
282 | (1) |
|
11.2.4 Independence from Compactification |
|
|
283 | (2) |
|
11.3 Twist by Admissible Twistor Structure and Beilinson Functors |
|
|
285 | (4) |
|
|
285 | (1) |
|
|
285 | (2) |
|
11.3.3 Beilinson Functors |
|
|
287 | (2) |
|
11.4 External Tensor Product |
|
|
289 | (8) |
|
|
289 | (2) |
|
11.4.2 External Tensor Product of Mixed Twistor D-Modules |
|
|
291 | (4) |
|
|
295 | (2) |
|
12 D-Triples and Their Functoriality |
|
|
297 | (74) |
|
12.1 D-Triples and Their Push-Forward |
|
|
298 | (16) |
|
12.1.1 D-triples and D-Complex-Triples |
|
|
298 | (3) |
|
|
301 | (8) |
|
12.1.3 Hermitian Adjoint of D-Complex-Triples |
|
|
309 | (1) |
|
12.1.4 Comparison with the Naive Push-Forward |
|
|
310 | (2) |
|
12.1.5 Rules for Signature (Appendix) |
|
|
312 | (2) |
|
12.2 Some Basic Functors for Non-degenerate D-Triples |
|
|
314 | (5) |
|
12.2.1 Category of Non-degenerate D-Triples |
|
|
314 | (1) |
|
|
314 | (1) |
|
12.2.3 Tensor Product with Smooth D-Triples |
|
|
315 | (1) |
|
12.2.4 Beilinson Functors for D-Triples |
|
|
316 | (1) |
|
12.2.5 External Tensor Product |
|
|
317 | (2) |
|
|
319 | (5) |
|
12.3.1 CX-Complex-Triples |
|
|
319 | (1) |
|
12.3.2 De Rham Functor for DX-Complex-Triples |
|
|
320 | (1) |
|
12.3.3 Compatibility with the Shift |
|
|
321 | (1) |
|
12.3.4 Compatibility with the Hermitian Adjoint |
|
|
321 | (1) |
|
12.3.5 Compatibility with the Push-Forward |
|
|
322 | (1) |
|
12.3.6 Compatibility with the External Tensor Product |
|
|
323 | (1) |
|
12.4 Duality of D-Triples |
|
|
324 | (15) |
|
12.4.1 Duality for Non-degenerate D-Triples |
|
|
324 | (3) |
|
12.4.2 Duality of Complexes of Non-degenerate DX-Triples |
|
|
327 | (1) |
|
12.4.3 Compatibility of the Push-Forward and the Duality |
|
|
328 | (1) |
|
12.4.4 Compatibility with Other Functors |
|
|
329 | (5) |
|
|
334 | (1) |
|
12.4.6 Push-Forward and Duality of D-Modules (Appendix) |
|
|
335 | (4) |
|
12.5 Proof of Theorems 12.4.1 and 12.4.5 |
|
|
339 | (11) |
|
|
339 | (1) |
|
12.5.2 Push Forward and the Functor CX |
|
|
339 | (3) |
|
12.5.3 Pairing on the Push-Forward |
|
|
342 | (3) |
|
12.5.4 Duality and Push-Forward |
|
|
345 | (2) |
|
12.5.5 Canonical Prolongation of Good Meromorphic Flat Bundles |
|
|
347 | (2) |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
350 | (21) |
|
12.6.1 Real Structure of Non-degenerate D-Triple |
|
|
350 | (1) |
|
12.6.2 Descriptions of Real Perverse Sheaves |
|
|
351 | (5) |
|
12.6.3 The de Rham Functor |
|
|
356 | (3) |
|
|
359 | (2) |
|
|
361 | (3) |
|
|
364 | (7) |
|
13 Duality and Real Structure of Mixed Twistor D-Modules |
|
|
371 | (42) |
|
13.1 Duality of R-Modules |
|
|
372 | (8) |
|
|
372 | (1) |
|
13.1.2 Compatibility with Push-Forward |
|
|
373 | (2) |
|
13.1.3 Specialization Along Χλ |
|
|
375 | (1) |
|
13.1.4 Twist by Smooth R-Modules |
|
|
376 | (1) |
|
13.1.5 Duality of Smooth R-Modules |
|
|
377 | (2) |
|
13.1.6 Duality of Integrable RX-Modules |
|
|
379 | (1) |
|
13.2 Duality and Strict Specializability of R-Modules |
|
|
380 | (6) |
|
|
380 | (1) |
|
|
381 | (1) |
|
|
381 | (2) |
|
13.2.4 Filtered Free Module |
|
|
383 | (1) |
|
13.2.5 A Filtered Free Resolution |
|
|
384 | (1) |
|
13.2.6 Proof of Proposition 13.2.1 |
|
|
385 | (1) |
|
13.3 Duality of Mixed Twistor D-Modules |
|
|
386 | (8) |
|
|
386 | (3) |
|
13.3.2 Relative Monodromy Filtrations |
|
|
389 | (1) |
|
13.3.3 Duality of Smooth R-Triples |
|
|
389 | (1) |
|
13.3.4 Duality of Canonical Prolongation as R-Triples |
|
|
390 | (1) |
|
13.3.5 Duality of Minimal Extensions in the Pure Case |
|
|
390 | (2) |
|
13.3.6 Duality of the Canonical Prolongations in MTM |
|
|
392 | (1) |
|
13.3.7 Local Construction of the Pairing DT |
|
|
392 | (1) |
|
13.3.8 End of the Proof of Theorem 13.3.1 |
|
|
393 | (1) |
|
13.4 Real Structure of Mixed Twistor D-Modules |
|
|
394 | (10) |
|
|
394 | (2) |
|
13.4.2 Real Structure of Mixed Twistor D-Modules |
|
|
396 | (1) |
|
13.4.3 R-Betti Structure of the Underlying D-Modules |
|
|
397 | (1) |
|
13.4.4 Real Structure in the Integrable Case |
|
|
398 | (6) |
|
13.5 Relation with Mixed Hodge Modules |
|
|
404 | (9) |
|
13.5.1 Some Compatibilities |
|
|
407 | (1) |
|
|
408 | (5) |
|
14 Algebraic Mixed Twistor D-Modules and Their Derived Category |
|
|
413 | (52) |
|
14.1 Algebraic Mixed Twistor D-Modules |
|
|
414 | (13) |
|
|
414 | (1) |
|
14.1.2 Restriction of KMS-Spectrum |
|
|
415 | (1) |
|
14.1.3 Some Functors for Algebraic Mixed Twistor D-Modules |
|
|
415 | (7) |
|
|
422 | (1) |
|
14.1.5 The Underlying Rλ0-Modules |
|
|
423 | (2) |
|
|
425 | (1) |
|
14.1.7 Algebraic Integrable Mixed Twistor D-Modules |
|
|
425 | (2) |
|
14.2 Derived Category of Algebraic Mixed Twistor D-Modules |
|
|
427 | (4) |
|
14.2.1 Some Exact Functors |
|
|
427 | (2) |
|
14.2.2 A Version of Kashiwara's Equivalence |
|
|
429 | (1) |
|
|
430 | (1) |
|
14.3 Push-Forward and Pull Back |
|
|
431 | (23) |
|
14.3.1 Push-Forward of Algebraic Holonomic D-Modules |
|
|
431 | (11) |
|
14.3.2 Push-Forward of Algebraic Mixed Twistor D-Modules |
|
|
442 | (6) |
|
14.3.3 Pull Back of Algebraic Mixed Twistor D-Modules |
|
|
448 | (4) |
|
|
452 | (1) |
|
14.3.5 Tensor and Inner Homomorphism |
|
|
453 | (1) |
|
|
453 | (1) |
|
14.3.7 Mixed Hodge Modules |
|
|
454 | (1) |
|
14.4 Algebraicity of the R-Modules in the Integrable Case |
|
|
454 | (11) |
|
|
454 | (2) |
|
|
456 | (1) |
|
|
457 | (1) |
|
14.4.4 Extension of R-Modules with Good-KMS Structure |
|
|
458 | (1) |
|
14.4.5 The Extension of Admissible Mixed Twistor Structure |
|
|
459 | (1) |
|
|
460 | (3) |
|
14.4.7 Proof of Theorem 14.4.8 |
|
|
463 | (2) |
|
15 Good Systems of Ramified Irregular Values |
|
|
465 | (14) |
|
15.1 Good System of Ramified Irregular Values |
|
|
466 | (5) |
|
15.1.1 Good Set of irregular Values |
|
|
466 | (1) |
|
15.1.2 Good System of Ramified Irregular Values |
|
|
467 | (1) |
|
15.1.3 Specialization of Good Set of Ramified Irregular Values |
|
|
468 | (1) |
|
|
468 | (3) |
|
15.2 Resolution of Turning Points for Lagrangian Covers |
|
|
471 | (8) |
|
|
471 | (1) |
|
|
472 | (1) |
|
15.2.3 Separation of Ramification and Polar Part |
|
|
473 | (2) |
|
15.2.4 Separation of Cover |
|
|
475 | (1) |
|
15.2.5 Proof of Theorem 15.2.7 |
|
|
476 | (3) |
References |
|
479 | (4) |
Index |
|
483 | |