Muutke küpsiste eelistusi

E-raamat: mm-Wave Silicon Power Amplifiers and Transmitters

Edited by (Virginia Polytechnic Institute and State University), Edited by (University of Southern California)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 111,14 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Build high-performance, spectrally clean, energy-efficient mm-wave power amplifiers and transmitters with this cutting-edge guide to designing, modeling, analysing, implementing and testing new mm-wave systems. Suitable for students, researchers and practicing engineers, this self-contained guide provides in-depth coverage of state-of-the-art semiconductor devices and technologies, linear and nonlinear power amplifier technologies, efficient power combining systems, circuit concepts, system architectures and system-on-a-chip realizations. The world's foremost experts from industry and academia cover all aspects of the design process, from device technologies to system architectures. Accompanied by numerous case studies highlighting practical design techniques, tradeoffs and pitfalls, this is a superb resource for those working with high-frequency systems.

Muu info

Build high-performance, energy-efficient circuits with this cutting-edge guide to designing, modeling, analysing, implementing and testing new mm-wave systems.
List of Contributors
ix
Preface xi
1 Introduction
1(16)
Hossein Hashemi
Sanjay Raman
1.1 Why mm-waves?
1(2)
1.2 Why silicon?
3(1)
1.3 Wireless communication basics
4(2)
1.4 Wireless transmitter architectures
6(1)
1.5 Power amplifier basics
7(1)
1.6 Examples of commercial mm-wave applications
8(1)
1.7 Examples of military mm-wave applications and initiatives
9(4)
1.8 Conclusions
13(4)
Acknowledgments
13(1)
References
13(4)
2 Characteristics, performance, modeling, and reliability of SiGe HBT technologies for mm-wave power amplifiers
17(60)
David Harame
Vibhor Jain
Renata Camillo Castillo
2.1 Introduction
17(1)
2.2 Bipolar device physics
18(9)
2.3 SiGe HBT processing and structures
27(10)
2.4 Key circuit design metrics
37(10)
2.5 BiCMOS passive devices and features
47(5)
2.6 SiGe HBT modeling and characterization
52(6)
2.7 Reliability
58(6)
2.8 Performance limits of SiGe HBTs
64(2)
2.9 Summary and conclusions
66(11)
References
68(9)
3 Characteristics, performance, modeling, and reliability of CMOS technologies for mm-wave power amplifiers
77(62)
Antonino Scuderi
Egidio Ragonese
3.1 Introduction
77(1)
3.2 Materials for high frequency: CMOS and its evolution
78(1)
3.3 CMOS active devices
79(12)
3.4 Nonlinearities
91(7)
3.5 Noise
98(4)
3.6 Thermal effect
102(3)
3.7 Large-signal performance degradation and reliability
105(9)
3.8 CMOS passive devices
114(4)
3.9 Measurement and modeling issues
118(3)
3.10 CMOS trends: SOI
121(11)
3.11 Conclusions
132(7)
Acknowledgment
133(1)
References
133(6)
4 Linear-mode mm-wave silicon power amplifiers
139(41)
James Buckwalter
4.1 Why linear?
139(3)
4.2 Linear amplifier design: large-signal device characterization
142(6)
4.3 Gain of mm-wave amplifiers
148(7)
4.4 Linear classes of operation
155(7)
4.5 Optimization of mm-wave amplifiers: why linear?
162(4)
4.6 Case study: Q-band SiGe power amplifier
166(4)
4.7 Doherty amplifiers
170(5)
4.8 Case study: a Q-band Doherty power amplifier
175(2)
4.9 Summary
177(3)
References
178(2)
5 Switch-mode mm-wave silicon power amplifiers
180(27)
Harish Krishnaswamy
Hossein Hashemi
Anandaroop Chakrabarti
Kunal Datta
5.1 Introduction to switching power amplifiers
180(1)
5.2 Design issues for CMOS mm-wave switching power amplifiers
181(6)
5.3 Design issues for SiGe HBT mm-wave switching power amplifiers
187(13)
5.4 Linearizing architectures for switch-mode power amplifiers
200(3)
5.5 Conclusions
203(4)
References
204(3)
6 Stacked-transistor mm-wave power amplifiers
207(50)
Peter Asbeck
Harish Krishnaswamy
6.1 Introduction
207(1)
6.2 Motivation for stacking
207(4)
6.3 Principles of transistor stacking
211(5)
6.4 Transistor stacking for switch-mode operation
216(2)
6.5 Application of stacking at microwave frequencies
218(5)
6.6 Si device technology for stacked designs
223(3)
6.7 Stacked FET mm-wave design
226(6)
6.8 Design of mm-wave stacked-FET switching power amplifiers
232(6)
6.9 Stacking versus passive power-enhancement techniques
238(2)
6.10 Harmonic matching in stacked structures
240(1)
6.11 Active drive for stacked structures
240(1)
6.12 Case studies and experimental demonstrations
241(12)
6.13 Summary and conclusions
253(1)
6.14 Acknowledgments
254(3)
References
254(3)
7 On-chip power-combining techniques for mm-wave silicon power amplifiers
257(45)
Tian-Wei Huang
Jeng-Han Tsai
Jin-Fu Yeh
7.1 On-chip power-combining techniques
257(5)
7.2 Direct-shunt power combining
262(3)
7.3 2D power combining
265(17)
7.4 3D power-combining technique
282(15)
7.5 Conclusion
297(5)
References
298(4)
8 Outphasing mm-wave silicon transmitters
302(32)
Patrick Reynaert
Dixian Zhao
8.1 Introduction
302(2)
8.2 Outphasing basics
304(3)
8.3 Outphasing signal generation
307(6)
8.4 Outphasing signal combining
313(4)
8.5 Outphasing non-idealities
317(4)
8.6 Case study: 60-GHz outphasing transmitter
321(8)
8.7 Conclusions
329(5)
References
331(3)
9 Digital mm-wave silicon transmitters
334(42)
Ali M. Niknejad
Sorin P. Voinigescu
9.1 Motivation
334(3)
9.2 Architectures for high efficiency/linearity
337(7)
9.3 Digital mm-wave transmitter architectures with on-chip power combining
344(12)
9.4 Digital antenna modulation
356(15)
9.5 Conclusion
371(5)
References
373(3)
10 System-on-a-chip mm-wave silicon transmitters
376(43)
Brian Floyd
Awn Natarajan
10.1 Introduction
376(1)
10.2 Multi-Gb/s wireless links at mm-wave frequencies
376(4)
10.3 On-chip mm-wave transmitter architectures
380(6)
10.4 Single-element transmitters
386(1)
10.5 Phased-array transmitters
387(11)
10.6 Millimeter-wave transmitter examples
398(17)
10.7 Conclusion
415(4)
References
416(3)
11 Self-healing for silicon-based mm-wave power amplifiers
419(38)
Steven M. Bowers
Kaushik Sengupta
Kaushik Dasgupta
Ali Hajimiri
11.1 Background
419(2)
11.2 Introduction to self-healing
421(5)
11.3 Sensing: detecting critical performance metrics
426(7)
11.4 Actuation: countering performance degradation
433(6)
11.5 Data converters: interfacing with the digital core
439(3)
11.6 Algorithms: setting the actuators based on sensor data
442(3)
11.7 System measurements of a fully integrated self-healing PA
445(8)
11.8 Conclusions
453(4)
Acknowledgment
453(1)
References
453(4)
Index 457
Hossein Hashemi is a Professor of Electrical Engineering, Ming Hseih Faculty Fellow, and the co-director of the Ming Hsieh Institute and Ultimate Radio Laboratory, University of Southern California. Sanjay Raman is a Professor of Electrical and Computer Engineering at Virginia Tech and a former Program Manager in the Microsystems Technology Office, DARPA. He is a Fellow of the Institute of Electrical and Electronics Engineers.