Muutke küpsiste eelistusi

E-raamat: Mobile Robots: Navigation, Control and Sensing, Surface Robots and AUVs

  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Dec-2019
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119534709
  • Formaat - PDF+DRM
  • Hind: 130,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Dec-2019
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781119534709

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Presents the normal kinematic and dynamic equations for robots, including mobile robots, with coordinate transformations and various control strategies

This fully updated edition examines the use of mobile robots for sensing objects of interest, and focus primarily on control, navigation, and remote sensing. It also includes an entirely new section on modeling and control of autonomous underwater vehicles (AUVs), which exhibits unique complex three-dimensional dynamics.

Mobile Robots: Navigation, Control and Sensing, Surface Robots and AUVs, Second Edition starts with a chapter on kinematic models for mobile robots. It then offers a detailed chapter on robot control, examining several different configurations of mobile robots. Following sections look at robot attitude and navigation. The application of Kalman Filtering is covered. Readers are also provided with a section on remote sensing and sensors. Other chapters discuss: target tracking, including multiple targets with multiple sensors; obstacle mapping and its application to robot navigation; operating a robotic manipulator; and remote sensing via UAVs. The last two sections deal with the dynamics modeling of AUVs and control of AUVs. In addition, this text:

  • Includes two new chapters dealing with control of underwater vehicles
  • Covers control schemes including linearization and use of linear control design methods, Lyapunov stability theory, and more
  • Addresses the problem of ground registration of detected objects of interest given their pixel coordinates in the sensor frame
  • Analyzes geo-registration errors as a function of sensor precision and sensor pointing uncertainty

Mobile Robots: Navigation, Control and Sensing, Surface Robots and AUVs is intended for use as a textbook for a graduate course of the same title and can also serve as a reference book for practicing engineers working in related areas.

Preface xi
About the Authors xiii
Introduction 1(4)
1 Kinematic Models for Mobile Robots
5(8)
1.1 Introduction
5(1)
1.2 Vehicles with Front-Wheel Steering
5(3)
1.3 Vehicles with Differential-Drive Steering
8(5)
Exercises
11(1)
References
12(1)
2 Mobile Robot Control
13(58)
2.1 Introduction
13(1)
2.2 Front-Wheel Steered Vehicle, Heading Control
13(9)
2.3 Front-Wheel Steered Vehicle, Speed Control
22(1)
2.4 Heading and Speed Control for the Differential-Drive Robot
23(3)
2.5 Reference Trajectory and Incremental Control, Front-Wheel Steered Robot
26(5)
2.6 Heading Control of Front-Wheel Steered Robot Using the Nonlinear Model
31(3)
2.7 Computed Control for Heading and Velocity, Front-Wheel Steered Robot
34(2)
2.8 Heading Control of Differential-Drive Robot Using the Nonlinear Model
36(1)
2.9 Computed Control for Heading and Velocity, Differential-Drive Robot
37(1)
2.10 Steering Control Along a Path Using a Local Coordinate Frame
38(11)
2.11 Optimal Steering of Front-Wheel Steered Vehicle
49(18)
2.12 Optimal Steering of Front-Wheel Steered Vehicle, Free Final Heading Angle
67(4)
Exercises
68(1)
References
69(2)
3 Robot Attitude
71(14)
3.1 Introduction
71(1)
3.2 Definition of Yaw, Pitch, and Roll
71(1)
3.3 Rotation Matrix for Yaw
72(2)
3.4 Rotation Matrix for Pitch
74(1)
3.5 Rotation Matrix for Roll
75(2)
3.6 General Rotation Matrix
77(1)
3.7 Homogeneous Transformation
78(4)
3.8 Rotating a Vector
82(3)
Exercises
83(1)
References
84(1)
4 Robot Navigation
85(48)
4.1 Introduction
85(1)
4.2 Coordinate Systems
85(1)
4.3 Earth-Centered Earth-Fixed Coordinate System
85(3)
4.4 Associated Coordinate Systems
88(3)
4.5 Universal Transverse Mercator Coordinate System
91(2)
4.6 Global Positioning System
93(4)
4.7 Computing Receiver Location Using GPS, Numerical Methods
97(14)
4.7.1 Computing Receiver Location Using GPS via Newton's Method
97(8)
4.7.2 Computing Receiver Location Using GPS via Minimization of a Performance Index
105(6)
4.8 Array of GPS Antennas
111(3)
4.9 Gimbaled Inertial Navigation Systems
114(4)
4.10 Strap-Down Inertial Navigation Systems
118(5)
4.11 Dead Reckoning or Deduced Reckoning
123(2)
4.12 Inclinometer/Compass
125(8)
Exercises
127(4)
References
131(2)
5 Application of Kalman Filtering
133(38)
5.1 Introduction
133(1)
5.2 Estimating a Fixed Quantity Using Batch Processing
133(1)
5.3 Estimating a Fixed Quantity Using Recursive Processing
134(5)
5.4 Estimating the State of a Dynamic System Recursively
139(11)
5.5 Estimating the State of a Nonlinear System via the Extended Kalman Filter
150(21)
Exercises
165(4)
References
169(2)
6 Remote Sensing
171(32)
6.1 Introduction
171(1)
6.2 Camera-Type Sensors
171(10)
6.3 Stereo Vision
181(4)
6.4 Radar Sensing: Synthetic Aperture Radar
185(5)
6.5 Pointing of Range Sensor at Detected Object
190(5)
6.6 Detection Sensor in Scanning Mode
195(8)
Exercises
199(1)
References
200(3)
7 Target Tracking Including Multiple Targets with Multiple Sensors
203(20)
7.1 Introduction
203(1)
7.2 Regions of Confidence for Sensors
203(8)
7.3 Model of Target Location
211(4)
7.4 Inventory of Detected Targets
215(8)
Exercises
220(1)
References
221(2)
8 Obstacle Mapping and Its Application to Robot Navigation
223(16)
8.1 Introduction
223(1)
8.2 Sensors for Obstacle Detection and Geo-Registration
223(2)
8.3 Dead Reckoning Navigation
225(4)
8.4 Use of Previously Detected Obstacles for Navigation
229(4)
8.5 Simultaneous Corrections of Coordinates of Detected Obstacles and of the Robot
233(6)
Exercises
236(1)
References
237(2)
9 Operating a Robotic Manipulator
239(24)
9.1 Introduction
239(1)
9.2 Forward Kinematic Equations
239(3)
9.3 Path Specification in Joint Space
242(1)
9.4 Inverse Kinematic Equations
242(6)
9.5 Path Specification in Cartesian Space
248(1)
9.6 Velocity Relationships
249(6)
9.7 Forces and Torques
255(8)
Exercises
261(1)
References
262(1)
10 Remote Sensing via UAVs
263(6)
10.1 Introduction
263(1)
10.2 Mounting of Sensors
263(1)
10.3 Resolution of Sensors
264(1)
10.4 Precision of Vehicle Instrumentation
264(1)
10.5 Overall Geo-Registration Precision
265(4)
Exercise
267(1)
References
267(2)
11 Dynamics Modeling of AUVs
269(22)
11.1 Introduction
269(1)
11.2 Motivation
269(1)
11.3 Full Dynamic Model
270(3)
11.4 Hydrodynamic Model
273(1)
11.5 Reduced-Order Longitudinal Dynamics
274(2)
11.6 Computation of Steady Gliding Path in the Longitudinal Plane
276(3)
11.7 Scaling Analysis
279(2)
11.8 Spiraling Dynamics
281(5)
11.9 Computation of Spiral Path
286(5)
Exercises
288(1)
References
289(2)
12 Control of AUVs
291(32)
12.1 Introduction
291(1)
12.2 Longitudinal Gliding Stabilization
291(7)
12.2.1 Longitudinal Dynamic Model Reduction
292(3)
12.2.2 Passivity-Based Controller Design
295(2)
12.2.3 Simulation Results
297(1)
12.3 Yaw Angle Regulation
298(9)
12.3.1 Problem Statement
298(2)
12.3.2 Sliding Mode Controller Design
300(3)
12.3.3 Simulation Results
303(4)
12.4 Spiral Path Tracking
307(16)
12.4.1 Steady Spiral and Its Differential Geometric Parameters
307(3)
12.4.2 Two Degree-of-Freedom Control Design
310(4)
12.4.3 Simulation Results
314(7)
Exercises
321(1)
References
322(1)
Appendix A Demonstrations of Undergraduate Student Robotic Projects 323(4)
Index 327
GERALD COOK, ScD, is the Earle C. Williams Professor Emeritus of Electrical Engineering and past chairman of Electrical and Computer Engineering at George Mason University. He was previously Chairman of Electrical and Biomedical Engineering at Vanderbilt University and before that, Professor of Electrical Engineering at the University of Virginia. He is a Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE), a former president of the IEEE Industrial Electronics Society and a former Editor-in-Chief of the IEEE Transactions on Industrial Electronics.

FEITIAN ZHANG, PHD, is an Assistant Professor in the Electrical & Computer Engineering Department at George Mason University. He was awarded the GMU Multidisciplinary Research Awards in 2017 and the Office of Naval Research (ONR) Summer Faculty Fellowship in 2019. He is a member of the Institute of Electrical and Electronic Engineers (IEEE) and American Society of Mechanical Engineers (ASME).