Muutke küpsiste eelistusi

E-raamat: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools

  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Feb-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540763048
  • Formaat - PDF+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-Feb-2008
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540763048

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A most critical and important issue surrounding the design of automatic control systems with the successively increasing complexity is guaranteeing a high system performance over a wide operating range and meeting the requirements on system reliability and dependability. As one of the key technologies for the problem solutions, advanced fault detection and identification (FDI) technology is receiving considerable attention. The objective of this book is to introduce basic model-based FDI schemes, advanced analysis and design algorithms and the needed mathematical and control theory tools at a level for graduate students and researchers as well as for engineers.
Notation xix
Part I Introduction, basic concepts and preliminaries
Introduction
3(10)
Basic concepts of fault diagnosis technique
4(4)
Historical development and some relevant issues
8(3)
Notes and references
11(2)
Basic ideas, major issues and tools in the observer-based FDI framework
13(8)
On the observer-based residual generator framework
13(1)
Unknown input decoupling and fault isolation issues
14(1)
Robustness issues in the observer-based FDI framework
15(2)
On the parity space FDI framework
17(1)
Residual evaluation and threshold computation
17(1)
FDI system synthesis and design
18(1)
Notes and references
18(3)
Modelling of technical systems
21(30)
Description of nominal system behavior
22(1)
Coprime factorization technique
23(2)
Representations of disturbed systems
25(1)
Representations of system models with model uncertainties
25(2)
Modelling of faults
27(3)
Modelling of faults in closed loop feedback control systems
30(1)
Benchmark examples
31(18)
Speed control of a DC motor
31(3)
Inverted pendulum control system
34(4)
Three tank system
38(4)
Vehicle lateral dynamic system
42(4)
Electrohydraulic Servo-actuator
46(3)
Notes and references
49(2)
Structural fault detectability, isolability and identifiability
51(20)
Structural fault detectability
51(5)
Excitations and sufficiently excited systems
56(1)
Structural fault isolability
57(8)
Concept of structural fault isolability
57(1)
Fault isolability conditions
58(7)
Structural fault identifiability
65(2)
Notes and references
67(4)
Part II Residual generation
Basic residual generation methods
71(44)
Analytical redundancy
72(3)
Residuals and parameterization of residual generators
75(3)
Problems related to residual generator design and implementation
78(2)
Fault detection filter
80(1)
Diagnostic observer scheme
81(16)
Construction of diagnostic observer-based residual generators
81(2)
Characterization of solutions
83(8)
A numerical approach
91(4)
An algebraic approach
95(2)
Parity space approach
97(6)
Construction of parity relation based residual generators
98(2)
Characterization of parity space
100(2)
Examples
102(1)
Interconnections, comparison and some remarks
103(11)
Parity space approach and diagnostic observer
103(4)
Diagnostic observer and residual generator of general form
107(3)
Applications of the interconnections and some remarks
110(2)
Examples
112(2)
Notes and references
114(1)
Perfect unknown input decoupling
115(46)
Problem formulation
115(2)
Existence conditions of PUIDP
117(8)
A general existence condition
117(1)
A check condition via Rosenbrock system matrix
118(2)
Algebraic check conditions
120(5)
A frequency domain approach
125(3)
UIFDF design
128(11)
The eigenstructure assignment approach
128(4)
Geometric approach
132(7)
UIDO design
139(14)
An algebraic approach
140(2)
Unknown input observer approach
142(5)
A matrix pencil approach to the UIDO design
147(3)
A numerical approach to the UIDO design
150(3)
Unknown input parity space approach
153(1)
An alternative scheme - null matrix approach
153(1)
Minimum order residual generator
154(5)
Minimum order residual generator design by geometric approach
154(2)
An alternative solution
156(3)
Notes and references
159(2)
Residual generation with enhanced robustness against unknown inputs
161(86)
Mathematical and control theoretical preliminaries
162(12)
Signal norms
163(2)
System norms
165(3)
Computation of H2 and H∞ norms
168(1)
Singular value decomposition
169(1)
Co-inner-outer factorization
170(3)
Model matching problem
173(1)
Essentials of the LMI technique
173(1)
Kalman filter based residual generation
174(4)
Approximation of UI-distribution matrix
178(6)
Approximation of matrices Ed, Fd
178(2)
Approximation of matrices Hd,s
180(2)
Some remarks
182(2)
Robustness, fault sensitivity and performance indices
184(3)
Robustness and sensitivity
184(1)
Performance indices: robustness vs. sensitivity
185(1)
Relations between the performance indices
186(1)
Optimal selection of parity matrices and vectors
187(14)
Sf,+/Rd as performance index
188(3)
Sf,-/Rd as performance index
191(2)
JS-R as performance index
193(2)
Optimization performance and system order
195(2)
Summary and some remarks
197(4)
H∞ optimal fault identification scheme
201(1)
H2/H2 design of residual generators
202(4)
Relationship between H2/H2 design and optimal selection of parity vectors
206(5)
LMI aided design of FDF
211(21)
H2 to H2 trade-off design of FDF
213(5)
On H- index
218(7)
H2 to H- trade-off design of FDF
225(2)
H∞ to H- trade-off design of FDF
227(2)
An alternative H∞ to H-- trade-off design of FDF
229(3)
A brief summary and discussion
232(1)
The unified solution
232(6)
Hi/H∞ index and problem formulation
233(1)
Hi/H∞ optimal design of FDF: the standard form
234(3)
Discrete time version of the unified solution
237(1)
The general form of the unified solution
238(6)
Extended CIOF
238(2)
Generalization of the unified solution
240(4)
Notes and references
244(3)
Residual generation with enhanced robustness against model uncertainties
247(34)
Preliminaries
248(2)
LMI aided computation for system bounds
248(1)
Stability of stochastically uncertain systems
249(1)
Transforming model uncertainties into unknown inputs
250(2)
Reference model strategies
252(7)
Basic idea
252(1)
A reference model based solution for systems with norm bounded uncertainties
252(7)
Residual generation for systems with polytopic uncertainties
259(6)
The reference model scheme based scheme
259(4)
H_ to H∞ design formulation
263(2)
Residual generation for stochastically uncertain systems
265(11)
System dynamics and statistical properties
266(1)
Basic idea and problem formulation
266(1)
An LMI solution
267(7)
An alternative approach
274(2)
Notes and references
276(5)
Part III Residual evaluation and threshold computation
Norm based residual evaluation and threshold computation
281(30)
Preliminaries
282(2)
Basic concepts
284(1)
Some standard evaluation functions
285(2)
Basic ideas of threshold setting and problem formulation
287(4)
Dynamics of the residual generator
288(1)
Definitions of thresholds and problem formulation
289(2)
Computation of Jth, RMS, 2
291(6)
Computation of Jth, RMS, 2 for the systems with the norm bounded uncertainty
292(3)
Computation of Jth, RMS, 2 for the systems with the polytopic uncertainty
295(2)
Computation of Jth, peak, peak
297(5)
Computation of Jth, peak, peak for the systems with the norm bounded uncertainty
297(4)
Computation of Jth, peak, peak for the systems with the polytopic uncertainty
301(1)
Computation of Jth, peak, 2
302(5)
Computation of Jth, peak, 2 for the systems with the norm bounded uncertainty
302(3)
Computation of Jth, peak, 2 for the systems with the polytopic uncertainty
305(2)
Threshold generator
307(3)
Notes and references
310(1)
Statistical methods based residual evaluation and threshold setting
311(24)
Introduction
311(1)
Elementary statistical methods
312(8)
Basic hypothesis test
312(2)
Likelihood ratio and generalized likelihood ratio
314(2)
Vector-valued GLR
316(1)
Detection of change in variance
317(1)
Aspects of on-line realization
318(2)
Criteria for threshold computation
320(4)
The Neyman-Pearson criterion
320(1)
Maximum a posteriori probability (MAP) criterion
321(1)
Bayes' criterion
322(1)
Some remarks
323(1)
Application of GLR testing methods
324(9)
Kalman filter based fault detection
324(6)
Parity space based fault detection
330(3)
Notes and references
333(2)
Integration of norm based and statistical methods
335(34)
Residual evaluation in stochastic systems with deterministic disturbances
335(8)
Residual generation
336(1)
Problem formulation
337(1)
GLR solutions
338(3)
Discussion and example
341(2)
Residual evaluation scheme for stochastically uncertain systems
343(13)
Problem formulation
343(2)
Solution and design algorithms
345(11)
Probabilistic robustness technique aided threshold computation
356(8)
Problem formulation
356(2)
Outline of the basic idea
358(1)
LMIs needed for the solutions
359(1)
Problem solutions in the probabilistic framework
360(2)
An application example
362(2)
Concluding remarks
364(1)
Notes and references
364(5)
Part IV Fault detection, isolation and identification schemes
Integrated design of fault detection systems
369(34)
FAR and FDR
370(3)
Maximization of fault detectability by a given FAR
373(13)
Problem formulation
374(1)
Essential form of the solution
374(2)
A general solution
376(2)
Interconnections and comparison
378(4)
Examples
382(4)
Minimizing false alarm number by a given FDR
386(12)
Problem formulation
387(1)
Essential form of the solution
388(2)
The state space form
390(1)
The extended form
391(2)
Interpretation of the solutions and discussion
393(3)
An example
396(2)
On the application to stochastic systems
398(1)
Application to maximizing FDR by a given FAR
398(1)
Application to minimizing FAR by a given FDR
399(1)
Notes and references
399(4)
Fault isolation schemes
403(38)
Essentials
404(6)
Existence conditions for a perfect fault isolation
404(2)
PFIs and unknown input decoupling
406(3)
PFIs with unknown input decoupling (PFIUID)
409(1)
A frequency domain approach
410(2)
Fault isolation filter design
412(14)
A design approach based on the duality to decoupling control
412(3)
The geometric approach
415(2)
A generalized design approach
417(9)
An algebraic approach to fault isolation
426(5)
Fault isolation using a bank of residual generators
431(7)
The dedicated observer scheme (DOS)
432(3)
The generalized observer scheme (GOS)
435(3)
Notes and references
438(3)
On fault identification
441(22)
Fault identification filter and perfect fault identification
442(3)
FIF design with additional information
445(3)
On the optimal fault identification problem
448(2)
Study on the role of the weighting matrix
450(6)
Approaches to the design of FIF
456(4)
A general fault identification scheme
456(1)
An alternative fault detection scheme
457(1)
Identification of the size of a fault
458(2)
Notes and references
460(3)
References 463(8)
Index 471