Muutke küpsiste eelistusi

E-raamat: Model-based Health Monitoring of Hybrid Systems

  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-May-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461473695
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 23-May-2013
  • Kirjastus: Springer-Verlag New York Inc.
  • Keel: eng
  • ISBN-13: 9781461473695
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book systematically presents a comprehensive framework and effective techniques for in-depth analysis, clear design procedure, and efficient implementation of diagnosis and prognosis algorithms for hybrid systems. It offers an overview of the fundamentals of diagnosis\prognosis and hybrid bond graph modeling. This book also describes hybrid bond graph-based quantitative fault detection, isolation and estimation. Moreover, it also presents strategies to track the system mode and predict the remaining useful life under multiple fault condition. A real world complex hybrid systema vehicle steering control systemis studied using the developed fault diagnosis methods to show practical significance.

Readers of this book will benefit from easy-to-understand fundamentals of bond graph models, concepts of health monitoring, fault diagnosis and failure prognosis, as well as hybrid systems.  The reader will gain knowledge of fault detection and isolation in complex systems including those with hybrid nature, and will learn state-of-the-art developments in theory and technologies of fault diagnosis and failure prognosis for complex systems.
1 Health Monitoring of Engineering Systems
1(30)
1.1 Condition Based Maintenance
1(1)
1.2 Fault Diagnosis Tasks and Methodologies
2(14)
1.2.1 Fault Diagnosis Tasks
2(3)
1.2.2 Fault Diagnosis Methodologies
5(11)
1.3 Failure Prognosis Tasks and Methodologies
16(7)
1.3.1 Failure Prognosis Tasks
16(1)
1.3.2 Failure Prognosis Methodologies
17(6)
1.4 Organization of the Book
23(1)
References
24(7)
2 Hybrid Systems and Hybrid Bond Graph Models
31(50)
2.1 Hybrid Systems
31(3)
2.2 Modeling Methods for Hybrid Systems
34(2)
2.3 Basics of Bond Graph
36(30)
2.3.1 Bonds, Power and Causality
38(2)
2.3.2 Bond Graph Elements
40(9)
2.3.3 Causality of Basic Bond Graph Elements
49(3)
2.3.4 Sequential Causality Assignment Procedure
52(3)
2.3.5 Example of a Quarter Car System Modeling
55(11)
2.4 Hybrid Bond Graph
66(12)
2.4.1 Causality Properties and Causality Assignment for HBG
68(5)
2.4.2 Illustrative Examples
73(5)
References
78(3)
3 Quantitative Hybrid Bond Graph-Based Fault Detection and Isolation
81(66)
3.1 Introduction
81(1)
3.2 Bond Graph-Based Fault Diagnosis
81(29)
3.2.1 Analytical Redundancy Relationships
82(1)
3.2.2 Residual Evaluation and Fault Signature Matrix
83(1)
3.2.3 Generation of ARRs
84(26)
3.3 Hybrid Bond Graph-Based Fault Diagnosis
110(34)
3.3.1 Causality Assignment from FDI Perspective
111(14)
3.3.2 Global Analytical Redundancy Relationships
125(1)
3.3.3 Fault Detectability and Isolability Analysis
126(2)
3.3.4 Case Study
128(16)
References
144(3)
4 Fault Identification Techniques
147(44)
4.1 Nonlinear Least Square Optimization for Fault Identification
147(9)
4.1.1 Nonlinear Least Square Method
147(4)
4.1.2 Example: A Nonlinear Hybrid Electrical System
151(5)
4.2 Simultaneous Fault Parameter and Mode Change Identification
156(32)
4.2.1 Parametrization of Mode Changes
156(1)
4.2.2 Simultaneous Fault Parameter and Mode Switching Identification
157(8)
4.2.3 Example I: An Electro-Hydraulic Suspension
165(18)
4.2.4 Example II: A Hybrid Electrical System
183(5)
References
188(3)
5 Mode Tracking Techniques
191(44)
5.1 Mode Tracking of Hybrid Systems in FDI Framework
191(15)
5.1.1 Mode Change Signatures of a Hybrid System
191(2)
5.1.2 ARR-Based Mode Change Identification
193(10)
5.1.3 Illustrative Example
203(3)
5.2 Mode Identification of Hybrid Systems in the Presence of Fault
206(27)
5.2.1 Rule-Based Analysis of ARRs
212(7)
5.2.2 Implementation Schemes and Algorithms
219(4)
5.2.3 From Theory to Implementation
223(4)
5.2.4 Experimental Study
227(6)
References
233(2)
6 Application of Real Time FDI and Fault Estimation to a Vehicle Steering System
235(28)
6.1 Introduction
235(1)
6.2 Description of the Vehicle Steering System
236(2)
6.2.1 The Electro-Hydraulic Steering System
236(2)
6.2.2 Faults Under Consideration
238(1)
6.3 FDI Approach for the Front Steering System
238(12)
6.3.1 DHBG Model of the Electro-Hydraulic Steering System
238(8)
6.3.2 Development of GARRs
246(1)
6.3.3 FDI Approach
247(3)
6.4 Experiment Study
250(10)
6.4.1 Experimental Hardware and Software
251(2)
6.4.2 Result and Analysis
253(7)
References
260(3)
7 Multiple Failure Prognosis for Hybrid Systems
263
7.1 Prognosis of Multiple Incipient Faults
263(19)
7.1.1 Augmented Global Analytical Redundancy Relations
264(2)
7.1.2 Degradation Models
266(1)
7.1.3 Particle Swarm Optimization for Prognosis
267(5)
7.1.4 Illustrative Example
272(10)
7.2 Prognosis with Mode-Dependent Degradation Behaviors
282(15)
7.2.1 Dynamic Fault Isolation
283(2)
7.2.2 Mode-Dependent Degradation Behaviors
285(1)
7.2.3 Sequential Prognosis
286(3)
7.2.4 Experiment Result
289(8)
References
297