Muutke küpsiste eelistusi

E-raamat: Model-Based Machine Learning

(Microsoft Research Ltd., Cambridge, United Kingdom)
  • Formaat: 468 pages
  • Ilmumisaeg: 27-Oct-2023
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781498756976
  • Formaat - EPUB+DRM
  • Hind: 93,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 468 pages
  • Ilmumisaeg: 27-Oct-2023
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781498756976

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Today, machine learning is being applied to a growing variety of problems in a bewildering variety of domains. A fundamental challenge when using machine learning is connecting the abstract mathematics of a machine learning technique to a concrete, real world problem. This book tackles this challenge through model-based machine learning which focuses on understanding the assumptions encoded in a machine learning system and their corresponding impact on the behaviour of the system.

The key ideas of model-based machine learning are introduced through a series of case studies involving real-world applications. Case studies play a central role because it is only in the context of applications that it makes sense to discuss modelling assumptions. Each chapter introduces one case study and works through step-by-step to solve it using a model-based approach. The aim is not just to explain machine learning methods, but also showcase how to create, debug, and evolve them to solve a problem.

Features:





Explores the assumptions being made by machine learning systems and the effect these assumptions have when the system is applied to concrete problems. Explains machine learning concepts as they arise in real-world case studies. Shows how to diagnose, understand and address problems with machine learning systems. Full source code available, allowing models and results to be reproduced and explored. Includes optional deep-dive sections with more mathematical details on inference algorithms for the interested reader.

Arvustused

"I read Model-based Machine Learning with enthusiasm and curiosity, finding it well writtenand captivating. This book helps understand some of the most common models and it can beused by both beginners and more experienced individuals. I particularly appreciated that itpushes readers to think critically about the assumptions, sometimes hidden, their validity, andtheir consequences on the results obtained. As peoples lives are influenced by machine-madedecisions, understanding the assumptions that affect the behavior of a a machine learningalgorithm and making sure that it is transparent, interpretable and fair is an essential skill tohave for anyone who is responsible for any stage of a models development." -Emanuela Furfaro, in Journal of the American Statistical Association, October 2024

Introduction. How Can Machine Learning Solve my Problem?
1. A Murder
Mystery
2. Assessing Peoples Skills Interlude. The Machine Learning Life
Cycle
3. Meeting Your Match
4. Uncluttering Your Inbox
5. Making
Recommendations
6. Understanding Asthma
7. Harnessing the Crowd
8. How to
Read a Model Afterword
John Winn is a Principal Researcher at Microsoft Research, UK.