Muutke küpsiste eelistusi

E-raamat: Model-Based Tracking Control of Nonlinear Systems

  • Formaat: 315 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040053195
  • Formaat - EPUB+DRM
  • Hind: 80,59 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 315 pages
  • Ilmumisaeg: 19-Apr-2016
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781040053195

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Preface The book presents model-based control methods and techniques for nonlinear, specifically constrained, systems. It focuses on constructive control design methods with an emphasis on modeling constrained systems, generating dynamic control models,and designing tracking control algorithms for them. Actually, an active research geared by applications continues on dynamics and control of constrained systems. It is reflected by numerous research papers, monographs, and research reports. Many of them are listed at the end of each book chapter, but it is impossible to make the list complete. The book is not aimed at the survey of existing modeling, tracking, and stabilization design methods and algorithms. It offers some generalization of a tracking control design for constrained mechanical systems for which constraints can be of the programmed type and of arbitrary order. This generalization is developed throughout the book in accordance with the three main steps of a control design project, i.e., model building, controller design, and a controller implementation. The book content focuses on model building and, based upon this model that consists of the generalized programmed motion equations, on a presentation of new tracking control strategy architecture. The author would like to thank the editors at Taylor & Francis for their support in the book edition; Karol Pietrak, a Ph.D. candidate at Warsaw University of Technology, Warsaw, Poland, for excellent figure drawings in the book, and Maria Sanjuan-Janiec for the original book cover design"--



Arvustused

"The book addresses dynamic modeling and control design methods for nonlinear mechanical systems. The understanding of the author is that these two topics are closely related and should be studied together. ... All chapters are illustrated with examples. Each chapter of the book ends with a list of references. The book is addressed to graduate and postgraduate students as well as to control engineers and researches. A basic course in analytical mechanics and linear control theory is appreciated." -Zentralblatt MATH 1281

Preface xi
The Author xiii
1 Introduction
1(24)
1.1 Scope and Outline
3(3)
1.2 Mechanics and Nonlinear Control
6(14)
1.3 Role of Modeling in a Control Design Process
20(5)
References
21(4)
2 Dynamics Modeling of Constrained Systems
25(74)
2.1 Introduction---Art of Modeling
25(6)
2.1.1 Selection of Coordinates
26(3)
2.1.2 Generalized Velocities and Quasi-Velocities
29(2)
2.2 Constrained Systems
31(6)
2.2.1 Holonomic Constraints
32(1)
2.2.2 Nonholonomic Constraints
33(2)
2.2.3 Programmed Constraints
35(2)
2.3 Equations of Motion for Systems with First Order Constraints
37(30)
2.3.1 D'Alembert Principle
38(7)
2.3.2 Lagrange's Equations for Holonomic Systems
45(5)
2.3.3 Lagrange's Equations for First Order Nonholonomic Systems
50(2)
2.3.4 Maggi's Equations
52(3)
2.3.5 Nielsen's Equations
55(3)
2.3.6 Equations of Motion in Quasi-Coordinates
58(9)
2.4 Equations of Motion for Systems with High Order Constraints
67(32)
2.4.1 An Extended Concept of Constraints---Programmed Constraints
67(9)
2.4.2 Generalized Programmed Motion Equations Specified in Generalized Coordinates
76(12)
2.4.3 Generalized Programmed Motion Equations Specified in Quasi-Coordinates
88(6)
Problems
94(1)
References
94(5)
3 Introduction to Nonlinear Control Theory
99(84)
3.1 Stability Properties of Nonlinear Systems
99(12)
3.1.1 State-Space Representation of Nonlinear Systems
99(2)
3.1.2 Stability Theorems of the Lyapunov Direct Method
101(2)
3.1.3 Special Formulations of Stability Theorems
103(8)
3.2 Classification of Control Problems
111(7)
3.2.1 Stabilization
112(3)
3.2.2 Trajectory and Motion Tracking
115(2)
3.2.3 Path Following
117(1)
3.3 Control Properties of Nonlinear Systems
118(18)
3.3.1 Classification of Constrained Control Systems
118(4)
3.3.2 Accessibility and Controllability
122(9)
3.3.3 Stabilizability
131(4)
3.3.4 Differential Flatness
135(1)
3.4 Kinematic Control Models
136(8)
3.5 Dynamic Control Models
144(3)
3.6 Feedback Linearization of Nonlinear Systems
147(5)
3.7 Model-Based Control Design Methods
152(3)
3.8 Flatness-Based Control Design Methods
155(12)
3.8.1 Basic Notions of Equivalence and Flatness
155(4)
3.8.2 Flatness in Control Applications
159(2)
3.8.3 Flatness-Based Control Design---Examples
161(6)
3.8.4 Concluding Remarks---Verifying Flatness
167(1)
3.9 Other Control Design Techniques for Nonlinear Systems
167(16)
3.9.1 Backstepping
169(4)
3.9.2 Sliding Mode Control
173(2)
Problems
175(1)
References
176(7)
4 Stabilization Strategies for Nonlinear Systems
183(8)
Problems
189(1)
References
189(2)
5 Model-Based Tracking Control of Nonlinear Systems
191(34)
5.1 A Unified Control-Oriented Model for Constrained Systems
191(5)
5.2 Tracking Control of Holonomic Systems
196(4)
5.3 Tracking Control of First Order Nonholonomic Systems
200(6)
5.4 Tracking Control of Underactuated Systems
206(6)
5.5 Tracking Control Algorithms Specified in Quasi-Coordinates
212(13)
Problems
222(1)
References
222(3)
6 Path Following Strategies for Nonlinear Systems
225(8)
6.1 Path Following Strategies Based on Kinematic Control Models
226(3)
6.2 Path Following Strategies Based on Dynamic Control Models
229(4)
Problems
231(1)
References
231(2)
7 Model Reference Tracking Control of High Order Nonholonomic Systems
233(60)
7.1 Model Reference Tracking Control Strategy for Programmed Motion
234(6)
7.1.1 A Reference Dynamic Model for Programmed Motion
234(1)
7.1.2 Architecture of the Model Reference Tracking Control Strategy for Programmed Motion
235(2)
7.1.3 A Controller Design for Programmed Motion Tracking
237(3)
7.2 Non-Adaptive Tracking Control Algorithms for Programmed Motions
240(9)
7.2.1 Programmed Motion Tracking for a Unicycle
240(2)
7.2.2 Programmed Motion Tracking for a Planar Manipulator
242(4)
7.2.3 Programmed Motion Tracking for a Two-Wheeled Mobile Robot
246(3)
7.3 Adaptive Tracking Control Algorithms for Programmed Motions
249(9)
7.3.1 Adaptive Programmed Motion Tracking for a Planar Manipulator
250(4)
7.3.2 Adaptive Programmed Motion Tracking for a Unicycle
254(4)
7.4 Learning Tracking Control Algorithms for Programmed Motions
258(3)
7.5 Tracking Control Algorithms for Programmed Motions Specified in Quasi-Coordinates
261(3)
7.5.1 Tracking Control of the Unicycle Model Specified in Quasi-Coordinates
262(1)
7.5.2 Tracking Control of the Planar Manipulator Model Specified in Quasi-Coordinates
262(2)
7.6 Tracking Control Algorithms for Programmed Motions with the Velocity Observer
264(6)
7.7 Other Applications of the Model Reference Tracking Control Strategy for Programmed Motion
270(23)
7.7.1 Hybrid Programmed Motion-Force Tracking
270(7)
7.7.2 Application of a Kinematic Model as a Reference Model for Programmed Motions
277(4)
7.7.3 Robot Formation Control
281(9)
Problems
290(1)
References
290(3)
8 Concluding Remarks
293(4)
Index 297
Elbieta Jarzbowska is an associate professor in the Institute of Aeronautics and Applied Mechanics at the Warsaw University of Technology. She is a member of ASME, IEEE, GAMM, IFToMM Technical Committee of Mechatronics, and International SAR. Her research and teaching interests encompass dynamics modeling and analysis of multibody systems, nonlinear control of multibody systems, and geometric control theory.