|
Part I The Model-Free Prediction Principle |
|
|
|
1 Prediction: Some Heuristic Notions |
|
|
3 | (10) |
|
1.1 To Explain or to Predict? |
|
|
3 | (3) |
|
1.2 Model-Based Prediction |
|
|
6 | (3) |
|
1.3 Model-Free Prediction |
|
|
9 | (4) |
|
2 The Model-Free Prediction Principle |
|
|
13 | (20) |
|
|
13 | (1) |
|
2.2 Model-Free Approach to Prediction |
|
|
14 | (3) |
|
2.2.1 Motivation: The i.i.d. Case |
|
|
14 | (1) |
|
2.2.2 The Model-Free Prediction Principle |
|
|
14 | (3) |
|
2.3 Tools for Identifying a Transformation Towards i.i.d.--Ness |
|
|
17 | (5) |
|
2.3.1 Model-Free Prediction as an Optimization Problem |
|
|
17 | (1) |
|
2.3.2 Transformation into Gaussianity as a Stepping Stone |
|
|
17 | (2) |
|
2.3.3 Existence of a Transformation Towards i.i.d.--Ness |
|
|
19 | (1) |
|
2.3.4 A Simple Check of the Model-Free Prediction Principle |
|
|
20 | (1) |
|
2.3.5 Model-Free Model-Fitting in Practice |
|
|
21 | (1) |
|
2.4 Model-Free Predictive Distributions |
|
|
22 | (11) |
|
2.4.1 Prediction Intervals and Asymptotic Validity |
|
|
22 | (1) |
|
2.4.2 Predictive Roots and Model-Free Bootstrap |
|
|
23 | (3) |
|
2.4.3 Limit Model-Free Resampling Algorithm |
|
|
26 | (2) |
|
2.4.4 Prediction of Discrete Variables |
|
|
28 | (5) |
|
Part II Independent Data: Regression |
|
|
|
3 Model-Based Prediction in Regression |
|
|
33 | (24) |
|
3.1 Model-Based Regression |
|
|
33 | (3) |
|
3.2 Model-Based Prediction in Regression |
|
|
36 | (1) |
|
3.3 A First Application of the Model-Free Prediction Principle |
|
|
37 | (1) |
|
3.4 Model-Free/Model-Based Prediction |
|
|
38 | (2) |
|
3.5 Model-Free/Model-Based Prediction Intervals |
|
|
40 | (3) |
|
3.6 Pertinent Prediction Intervals |
|
|
43 | (4) |
|
|
43 | (2) |
|
3.6.2 Asymptotic Pertinence of Bootstrap Prediction Intervals |
|
|
45 | (2) |
|
3.7 Application to Linear Regression |
|
|
47 | (10) |
|
3.7.1 Better Prediction Intervals in Linear Regression |
|
|
47 | (2) |
|
3.7.2 Simulation: Prediction Intervals in Linear Regression |
|
|
49 | (1) |
|
3.7.3 Model-Free vs. Least Squares: A Reconciliation |
|
|
50 | (3) |
|
Appendix 1 The Solution of Eq. (3.9) |
|
|
53 | (1) |
|
Appendix 2 L1 vs. L2 Cross-Validation |
|
|
54 | (3) |
|
4 Model-Free Prediction in Regression |
|
|
57 | (24) |
|
|
57 | (1) |
|
4.2 Constructing the Transformation Towards i.i.d.--Ness |
|
|
58 | (5) |
|
4.3 Model-Free Optimal Predictors |
|
|
63 | (5) |
|
4.3.1 Model-Free and Limit Model-Free Optimal Predictors |
|
|
63 | (1) |
|
4.3.2 Asymptotic Equivalence of Point Predictors |
|
|
64 | (3) |
|
4.3.3 Cross-Validation for Model-Free Prediction |
|
|
67 | (1) |
|
|
68 | (2) |
|
4.5 Predictive Model-Free Bootstrap |
|
|
70 | (1) |
|
4.6 Model-Free Diagnostics |
|
|
71 | (1) |
|
|
72 | (9) |
|
4.7.1 When a Nonparametric Regression Model Is True |
|
|
72 | (4) |
|
4.7.2 When a Nonparametric Regression Model Is Not True |
|
|
76 | (2) |
|
|
78 | (1) |
|
Appendix 1 High-Dimensional and/or Functional Regressors |
|
|
78 | (3) |
|
5 Model-Free vs. Model-Based Confidence Intervals |
|
|
81 | (16) |
|
|
81 | (1) |
|
5.2 Model-Based Confidence Intervals in Regression |
|
|
82 | (3) |
|
5.3 Model-Free Confidence Intervals Without an Additive Model |
|
|
85 | (4) |
|
|
89 | (8) |
|
5.4.1 When a Nonparametric Regression Model Is True |
|
|
89 | (3) |
|
5.4.2 When a Nonparametric Regression Model Is Not True |
|
|
92 | (1) |
|
|
93 | (4) |
|
Part III Dependent Data: Time Series |
|
|
|
6 Linear Time Series and Optimal Linear Prediction |
|
|
97 | (16) |
|
|
97 | (2) |
|
6.2 Optimal Linear Prediction |
|
|
99 | (1) |
|
6.3 Linear Prediction Using the Complete Process History |
|
|
100 | (3) |
|
6.3.1 Autocovariance Matrix Estimation |
|
|
101 | (1) |
|
6.3.2 Data-Based Choice of the Banding Parameter |
|
|
102 | (1) |
|
6.4 Correcting a Matrix Towards Positive Definiteness |
|
|
103 | (3) |
|
6.4.1 Eigenvalue Thresholding |
|
|
103 | (1) |
|
6.4.2 Shrinkage of Problematic Eigenvalues |
|
|
104 | (1) |
|
6.4.3 Shrinkage Towards White Noise |
|
|
105 | (1) |
|
6.4.4 Shrinkage Towards a Second Order Estimate |
|
|
106 | (1) |
|
6.5 Estimating the Length n Vector γ(n) |
|
|
106 | (1) |
|
6.6 Linear Prediction Based on the Model-Free Prediction Principle |
|
|
107 | (6) |
|
6.6.1 A First Idea: The Discrete Fourier Transform |
|
|
107 | (1) |
|
6.6.2 Whitening and the Model-Free Linear Predictor |
|
|
108 | (3) |
|
6.6.3 From Point Predictors to Prediction Intervals |
|
|
111 | (1) |
|
|
112 | (1) |
|
7 Model-Based Prediction in Autoregression |
|
|
113 | (28) |
|
|
113 | (1) |
|
7.2 Prediction Intervals in AR Models: Laying the Foundation |
|
|
114 | (5) |
|
7.2.1 Forward and Backward Bootstrap for Prediction |
|
|
114 | (2) |
|
7.2.2 Prediction Intervals for Autoregressive Processes |
|
|
116 | (1) |
|
7.2.3 Pertinent Prediction Intervals in Model-Based Autoregression |
|
|
117 | (2) |
|
7.3 Bootstrap Prediction Intervals for Linear Autoregressions |
|
|
119 | (8) |
|
7.3.1 Forward Bootstrap with Fitted Residuals |
|
|
120 | (1) |
|
7.3.2 Forward Bootstrap with Predictive Residuals |
|
|
121 | (1) |
|
7.3.3 Forward Bootstrap Based on Studentized Roots |
|
|
122 | (1) |
|
|
123 | (3) |
|
7.3.5 Generalized Bootstrap Prediction Intervals |
|
|
126 | (1) |
|
7.4 Alternative Approaches to Bootstrap Prediction Intervals for Linear Autoregressions |
|
|
127 | (1) |
|
7.5 Simulations: Linear AR Models |
|
|
128 | (6) |
|
7.5.1 Unconditional Coverage Level |
|
|
128 | (4) |
|
7.5.2 Conditional Coverage Level |
|
|
132 | (2) |
|
7.6 Bootstrap Prediction Intervals for Nonparametric Autoregression |
|
|
134 | (7) |
|
7.6.1 Nonparametric Autoregression with i.i.d. Errors |
|
|
134 | (3) |
|
7.6.2 Nonparametric Autoregression with Heteroscedastic Errors |
|
|
137 | (2) |
|
|
139 | (2) |
|
8 Model-Free Inference for Markov Processes |
|
|
141 | (36) |
|
|
141 | (1) |
|
8.2 Prediction and Bootstrap for Markov Processes |
|
|
142 | (3) |
|
8.2.1 Notation and Definitions |
|
|
142 | (2) |
|
8.2.2 Forward vs. Backward Bootstrap for Prediction Intervals |
|
|
144 | (1) |
|
8.3 Bootstrap Based on Estimates of Transition Density |
|
|
145 | (3) |
|
8.4 The Local Bootstrap for Markov Processes |
|
|
148 | (3) |
|
8.5 Hybrid Backward Markov Bootstrap for Nonparametric Autoregression |
|
|
151 | (2) |
|
8.6 Prediction Intervals for Markov Processes Based on the Model-Free Prediction Principle |
|
|
153 | (6) |
|
8.6.1 Theoretical Transformation |
|
|
154 | (1) |
|
8.6.2 Estimating the Transformation from Data |
|
|
155 | (4) |
|
8.7 Finite-Sample Performance of Model-Free Prediction Intervals |
|
|
159 | (4) |
|
8.8 Model-Free Confidence Intervals in Markov Processes |
|
|
163 | (7) |
|
8.8.1 Finite-Sample Performance of Confidence Intervals |
|
|
167 | (3) |
|
8.9 Discrete-Valued Markov Processes |
|
|
170 | (7) |
|
8.9.1 Transition Densities and Local Bootstrap |
|
|
171 | (3) |
|
8.9.2 Model-Free Bootstrap |
|
|
174 | (2) |
|
|
176 | (1) |
|
9 Predictive Inference for Locally Stationary Time Series |
|
|
177 | (22) |
|
|
177 | (2) |
|
9.2 Model-Based Inference |
|
|
179 | (6) |
|
9.2.1 Theoretical Optimal Point Prediction |
|
|
179 | (1) |
|
9.2.2 Trend Estimation and Practical Prediction |
|
|
180 | (3) |
|
9.2.3 Model-Based Predictors and Prediction Intervals |
|
|
183 | (2) |
|
|
185 | (14) |
|
9.3.1 Constructing the Theoretical Transformation |
|
|
186 | (1) |
|
9.3.2 Kernel Estimation of the "Uniformizing" Transformation |
|
|
187 | (1) |
|
9.3.3 Local Linear Estimation of the "Uniformizing" Transformation |
|
|
188 | (1) |
|
9.3.4 Estimation of the Whitening Transformation |
|
|
189 | (1) |
|
9.3.5 Model-Free Point Predictors and Prediction Intervals |
|
|
190 | (3) |
|
9.3.6 Special Case: Strictly Stationary Data |
|
|
193 | (1) |
|
9.3.7 Local Stationarity in a Higher-Dimensional Marginal |
|
|
194 | (1) |
|
|
195 | (4) |
|
Part IV Case Study: Model-Free Volatility Prediction for Financial Time Series |
|
|
|
10 Model-Free vs. Model-Based Volatility Prediction |
|
|
199 | (38) |
|
|
199 | (3) |
|
10.2 Three Illustrative Datasets |
|
|
202 | (3) |
|
10.3 Normalization and Variance-Stabilization |
|
|
205 | (10) |
|
10.3.1 Definition of the NoVaS Transformation |
|
|
205 | (1) |
|
10.3.2 Choosing the Parameters of NoVaS |
|
|
206 | (1) |
|
10.3.3 Simple NoVaS Algorithm |
|
|
207 | (6) |
|
10.3.4 Exponential NoVaS Algorithm |
|
|
213 | (2) |
|
10.4 Model-Based Volatility Prediction |
|
|
215 | (6) |
|
10.4.1 Some Basic Notions: L1 vs. L2 |
|
|
215 | (4) |
|
10.4.2 Do Financial Returns Have a Finite Fourth Moment? |
|
|
219 | (2) |
|
10.5 Model-Free Volatility Prediction |
|
|
221 | (9) |
|
10.5.1 Transformation Towards i.i.d.--Ness |
|
|
222 | (2) |
|
10.5.2 Volatility Prediction Using NoVaS |
|
|
224 | (2) |
|
10.5.3 Optimizing NoVaS for Volatility Prediction |
|
|
226 | (4) |
|
10.5.4 Summary of Data-Analytic Findings on Volatility Prediction |
|
|
230 | (1) |
|
10.6 Model-Free Prediction Intervals for Financial Returns |
|
|
230 | (2) |
|
10.7 Time-Varying NoVaS: Robustness Against Structural Breaks |
|
|
232 | (5) |
|
|
235 | (2) |
References |
|
237 | |