Muutke küpsiste eelistusi

E-raamat: Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number

  • Formaat - EPUB+DRM
  • Hind: 103,68 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

An original, systematic-solution approach to uncertain nonlinear systems control and modeling using fuzzy equations and fuzzy differential equations

There are various numerical and analytical approaches to the modeling and control of uncertain nonlinear systems. Fuzzy logic theory is an increasingly popular method used to solve inconvenience problems in nonlinear modeling. Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number presents a structured approach to the control and modeling of uncertain nonlinear systems in industry using fuzzy equations and fuzzy differential equations.

The first major work to explore methods based on neural networks and Bernstein neural networks, this innovative volume provides a framework for control and modeling of uncertain nonlinear systems with applications to industry. Readers learn how to use fuzzy techniques to solve scientific and engineering problems and understand intelligent control design and applications. The text assembles the results of four years of research on control of uncertain nonlinear systems with dual fuzzy equations, fuzzy modeling for uncertain nonlinear systems with fuzzy equations, the numerical solution of fuzzy equations with Z-numbers, and the numerical solution of fuzzy differential equations with Z-numbers. Using clear and accessible language to explain concepts and principles applicable to real-world scenarios, this book:

  • Presents the modeling and control of uncertain nonlinear systems with fuzzy equations and fuzzy differential equations
  • Includes an overview of uncertain nonlinear systems for non-specialists
  • Teaches readers to use simulation, modeling and verification skills valuable for scientific research and engineering systems development
  • Reinforces comprehension with illustrations, tables, examples, and simulations

Modeling and Control of Uncertain Nonlinear Systems with Fuzzy Equations and Z-Number is suitable as a textbook for advanced students, academic and industrial researchers, and practitioners in fields of systems engineering, learning control systems, neural networks, computational intelligence, and fuzzy logic control.

List of Figures
xi
List of Tables
xiii
Preface xv
1 Fuzzy Equations
1(20)
1.1 Introduction
1(1)
1.2 Fuzzy Equations
1(2)
1.3 Algebraic Fuzzy Equations
3(2)
1.4 Numerical Methods for Solving Fuzzy Equations
5(15)
1.4.1 Newton Method
5(2)
1.4.2 Steepest Descent Method
7(1)
1.4.3 Adomian Decomposition Method
8(1)
1.4.4 Ranking Method
9(1)
1.4.5 Intelligent Methods
10(1)
1.4.5.1 Genetic Algorithm Method
10(1)
1.4.5.2 Neural Network Method
11(3)
1.4.5.3 Fuzzy Linear Regression Model
14(6)
1.5 Summary
20(1)
2 Fuzzy Differential Equations
21(18)
2.1 Introduction
21(1)
2.2 Predictor-Corrector Method
21(2)
2.3 Adomian Decomposition Method
23(1)
2.4 Euler Method
23(2)
2.5 Taylor Method
25(1)
2.6 Runge-Kutta Method
25(1)
2.7 Finite Difference Method
26(2)
2.8 Differential Transform Method
28(1)
2.9 Neural Network Method
29(7)
2.10 Summary
36(3)
3 Modeling and Control Using Fuzzy Equations
39(30)
3.1 Fuzzy Modeling with Fuzzy Equations
39(13)
3.1.1 Fuzzy Parameter Estimation with Neural Networks
45(3)
3.1.2 Upper Bounds of the Modeling Errors
48(4)
3.2 Control with Fuzzy Equations
52(7)
3.3 Simulations
59(8)
3.4 Summary
67(2)
4 Modeling and Control Using Fuzzy Differential Equations
69(32)
4.1 Introduction
69(1)
4.2 Fuzzy Modeling with Fuzzy Differential Equations
69(3)
4.3 Existence of a Solution
72(7)
4.4 Solution Approximation using Bernstein Neural Networks
79(4)
4.5 Solutions Approximation using the Fuzzy Sumudu Transform
83(2)
4.6 Simulations
85(14)
4.7 Summary
99(2)
5 System Modeling with Partial Differential Equations
101(18)
5.1 Introduction
101(1)
5.2 Solutions using Burgers--Fisher Equations
101(5)
5.3 Solution using Wave Equations
106(3)
5.4 Simulations
109(8)
5.5 Summary
117(2)
6 System Control using Z-numbers
119(34)
6.1 Introduction
119(1)
6.2 Modeling using Dual Fuzzy Equations and Z-numbers
119(5)
6.3 Controllability using Dual Fuzzy Equations
124(4)
6.4 Fuzzy Controller
128(3)
6.5 Nonlinear System Modeling
131(1)
6.6 Controllability using Fuzzy Differential Equations
131(4)
6.7 Fuzzy Controller Design using Fuzzy Differential Equations and Z-number
135(3)
6.8 Approximation using a Fuzzy Sumudu Transform and Z-numbers
138(1)
6.9 Simulations
139(12)
6.10 Summary
151(2)
References 153(14)
Index 167
Wen Yu, PhD, is Professor at CINVESTAV-IPN (National Polytechnic Institute), Mexico City, Mexico. He is Associate Editor of IEEE Transactions on Cybernetics, Neurocomputing, and Journal of Intelligent and Fuzzy Systems. Dr. Yu is a member of the Mexican Academy of Sciences.

Raheleh Jafari is a postdoctoral research fellow at Centre for Artificial Intelligence Research (CAIR), University of Agder, Grimstad, Norway. She is on the editorial board of the Journal of Intelligent and Fuzzy Systems, and served as a reviewer in various journals and conferences. Her research interest is in the field of artificial intelligence, fuzzy control, machine learning, nonlinear systems, neural networks, and fuzzy engineering.