Muutke küpsiste eelistusi

E-raamat: Modeling and Convexity

  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Mar-2013
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118622391
  • Formaat - PDF+DRM
  • Hind: 253,11 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Mar-2013
  • Kirjastus: ISTE Ltd and John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118622391

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Convexity is a central concept in Applied Sciences and Engineering. It is central to the mathematical formalization of many physical phenomena and a large number of numerical procedures depend upon it. For example, convex analysis tools are involved in the modeling of mechanical systems containing unilateral constraints (contact, friction, plasticity, etc.), in the definition of constitutive relations of materials, and in variational and optimization methods.

This reference work gives the reader a complete and comprehensive presentation of the foundations of convex analysis and includes applications of practical significance and importance in engineering. The presentation of the theory is self-contained and proof of all the essential results is given. The examples consider meaningful situations such as the modeling of curvilinear structures, the motion of a mass of people or the solidification of a material. Non-convex situations are considered by means of relaxation methods and the connections between probability and convexity are explored and exploited in order to generate numerical algorithms.

This reference book gives the reader a complete but comprehensive presentation of the foundations of convex analysis and presents applications to significant situations in engineering. The presentation of the theory is self-contained and the proof of all the essential results is given. The examples consider meaningful situations such as the modeling of curvilinear structures, the motion of a mass of people or the solidification of a material. Non convex situations are considered by means of relaxation methods and the connections between probability and convexity are explored and exploited in order to generate numerical algorithms.

Arvustused

The book is addressed mainly to mechanical engineers, but it can also be useful to mathematicians who are interested in applications.  (Mathematical Reviews, 2012)

 

Introduction ix
PART 1 MOTIVATION: EXAMPLES AND APPLICATIONS
1(76)
Chapter 1 Curvilinear Continuous Media
3(30)
1.1 One-dimensional curvilinear media
4(18)
1.1.1 Ideally flexible string
5(2)
1.1.1.1 The essential difficulty
7(4)
1.1.1.2 Unilateral contact
11(8)
1.1.2 The "elastica" problem: buckling of an inextensible beam
19(3)
1.2 Supple membranes
22(11)
1.2.1 Curvilinear coordinates and charts
23(2)
1.2.2 Metric tensor
25(3)
1.2.3 Internal efforts and constitutive law
28(1)
1.2.4 Exterior efforts
29(1)
1.2.5 Infinitesimal deformations
29(1)
1.2.6 Principle of minimum energy
30(3)
Chapter 2 Unilateral System Dynamics
33(20)
2.1 Dynamics of ideally flexible strings
34(6)
2.1.1 Propagation of discontinuities
34(2)
2.1.2 Evolution
36(2)
2.1.3 Vibrations
38(1)
2.1.3.1 Harmonic response
38(1)
2.1.3.2 Small oscillations
38(2)
2.2 Contact dynamics
40(13)
2.2.1 Evolution of a material point
40(5)
2.2.2 Evolution of deformable and non-deformable solids
45(2)
2.2.3 Granular modeling of the movement of a crowd
47(6)
Chapter 3 A Simplified Model of Fusion/Solidification
53(8)
3.1 A simplified model of phase transition
53(8)
Chapter 4 Minimization of a Non-Convex Function
61(8)
4.1 Probabilities, convexity and global optimization
61(8)
Chapter 5 Simple Models of Plasticity
69(8)
5.1 Ideal elastoplasticity
72(5)
PART 2 THEORETICAL ELEMENTS
77(410)
Chapter 6 Elements of Set Theory
79(18)
6.1 Elementary notions and operations on sets
80(3)
6.2 The axiom of choice
83(6)
6.3 Zorn's lemma
89(8)
Chapter 7 Real Hilbert Spaces
97(104)
7.1 Scalar product and norm
99(8)
7.2 Bases and dimensions
107(7)
7.3 Open sets and closed sets
114(9)
7.4 Sequences
123(14)
7.4.1 Dense sequences and dense sets
128(9)
7.5 Linear functionals
137(9)
7.5.1 Sequences and continuity
144(2)
7.6 Complete space
146(14)
7.6.1 The Cauchy sequence
146(4)
7.6.2 Completion of a space
150(8)
7.6.3 Baire's theorem: a property of complete spaces
158(2)
7.7 Orthogonal projection onto a vector subspace
160(7)
7.8 Riesz's representation theory
167(6)
7.9 Weak topology
173(11)
7.10 Separable spaces: Hilbert bases and series
184(17)
Chapter 8 Convex Sets
201(52)
8.1 Hyperplanes
201(7)
8.2 Convex sets
208(4)
8.3 Convex hulls
212(5)
8.4 Orthogonal projection on a convex set
217(11)
8.5 Separation theorems
228(13)
8.6 Convex cone
241(12)
Chapter 9 Functionals on a Hilbert Space
253(108)
9.1 Basic notions
254(7)
9.2 Convex functionals
261(10)
9.3 Semi-continuous functionals
271(27)
9.4 Affine functionals
298(5)
9.5 Convexification and LSC regularization
303(17)
9.6 Conjugate functionals
320(11)
9.7 Subdifferentiability
331(30)
Chapter 10 Optimization
361(60)
10.1 The optimization problem
361(1)
10.2 Basic notions
362(12)
10.2.1 Minimizing sequences
362(1)
10.2.2 Indicator function
363(7)
10.2.3 Coerciveness
370(4)
10.3 Fundamental results
374(47)
10.3.1 Approximation
386(2)
10.3.1.1 Exterior penalty approximation
388(7)
10.3.1.2 Interior penalty approximation
395(5)
10.3.1.3 Approximation by regularization
400(3)
10.3.1.4 Duality approximation
403(18)
Chapter 11 Variational Problems
421(66)
11.1 Fundamental notions
421(34)
11.1.1 Proximal elements
421(3)
11.1.2 Operators and monotony
424(2)
11.1.2.1 Monotony
426(2)
11.1.2.2 Semi-continuous operators and hemi-continuous operators
428(7)
11.1.2.3 Maximal monotone operators
435(11)
11.1.2.4 Brower's fixed point theorem
446(9)
11.2 Zeros of operators
455(8)
11.3 Variational inequations
463(6)
11.4 Evolution equations
469(18)
Bibliography 487(8)
Index 495
Eduardo Souza De Cursi is Professor at the National Institute for Applied Sciences in Rouen, France, where he is also Dean of International Affairs and Director of the Laboratory for the Optimization and Reliability in Structural Mechanics.

Rubens Sampaio is the author of Modeling and Convexity, published by Wiley.