Muutke küpsiste eelistusi

E-raamat: Modeling, Identification and Control of Robots

(Professor at the Ecole Centrale, Nantes, France), (Head of the Robotics department at University of Montpelier, France)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jul-2004
  • Kirjastus: Hermes Penton
  • Keel: eng
  • ISBN-13: 9780080536613
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 83,97 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 01-Jul-2004
  • Kirjastus: Hermes Penton
  • Keel: eng
  • ISBN-13: 9780080536613
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Written by two of Europe's leading robotics experts, this book provides the tools for a unified approach to the modelling of robotic manipulators, whatever their mechanical structure.
No other publication covers the three fundamental issues of robotics: modelling, identification and control. It covers the development of various mathematical models required for the control and simulation of robots.

World class authority
Unique range of coverage not available in any other book
Provides a complete course on robotic control at an undergraduate and graduate level
Introduction xvii
Terminology and general definitions
1(12)
Introduction
1(1)
Mechanical components of a robot
2(2)
Definitions
4(3)
Joints
4(1)
Revolute joint
4(1)
Prismatic joint
5(1)
Joint space
5(1)
Task space
5(1)
Redundancy
6(1)
Singular configurations
6(1)
Choosing the number of degrees of freedom of a robot
7(1)
Architectures of robot manipulators
7(4)
Characteristics of a robot
11(1)
Conclusion
12(1)
Transformation matrix between vectors, frames and screws
13(22)
Introduction
13(1)
Homogeneous coordinates
14(1)
Representation of a point
14(1)
Representation of a direction
14(1)
Representation of a plane
15(1)
Homogeneous transformations
15(12)
Transformation of frames
15(1)
Transformation of vectors
16(1)
Transformation of planes
17(1)
Transformation matrix of a pure translation
17(1)
Transformation matrices of a rotation about the principle axes
18(1)
Transformation matrix of a rotation about the x axis by an angle θ
18(1)
Transformation matrix of a rotation about the y axis by an angle θ
19(1)
Transformation matrix of a rotation θ about the z axis by an angle θ
19(1)
Properties of homogeneous transformation matrices
20(3)
Transformation matrix of a rotation about a general vector located at the origin
23(2)
Equivalent angle and axis of a general rotation
25(2)
Kinematic screw
27(2)
Definition of a screw
27(1)
Representation of velocity (kinematic screw)
28(1)
Transformation of screws
28(1)
Differential translation and rotation of frames
29(3)
Representation of forces (wrench)
32(1)
Conclusion
33(2)
Direct geometric model of serial robots
35(22)
Introduction
35(1)
Description of the geometry of serial robots
36(6)
Direct geometric model
42(3)
Optimization of the computation of the direct geometric model
45(2)
Transformation matrix of the end-effector in the world frame
47(1)
Specification of the orientation
48(7)
Euler angles
49(2)
Roll-Pitch-Yaw angles
51(2)
Quaternions
53(2)
Conclusion
55(2)
Inverse geometric model of serial robots
57(28)
Introduction
57(1)
Mathematical statement of the problem
58(1)
Inverse geometric model of robots with simple geometry
59(12)
Principle
59(2)
Special case: robots with a spherical wrist
61(1)
Position equation
62(1)
Orientation equation
62(5)
Inverse geometric model of robots with more than six degrees of freedom
67(1)
Inverse geometric model of robots with less than six degrees of freedom
68(3)
Inverse geometric model of decoupled six degree-of-freedom robots
71(9)
Introduction
71(1)
Inverse geometric model of six degree-of-freedom robots having a spherical joint
72(1)
General solution of the position equation
72(6)
General solution of the orientation equation
78(1)
Inverse geometric model of robots with three prismatic joints
79(1)
Solution of the orientation equation
79(1)
Solution of the position equation
79(1)
Inverse geometric model of general robots
80(3)
Conclusion
83(2)
Direct kinematic model of serial robots
85(32)
Introduction
85(1)
Computation of the Jacobian matrix from the direct geometric model
86(1)
Basic Jacobian matrix
87(5)
Computation of the basic Jacobian matrix
88(2)
Computation of the matrix iJn
90(2)
Decomposition of the Jacobian matrix into three matrices
92(2)
Efficient computation of the end-effector velocity
94(1)
Dimension of the task space of a robot
95(1)
Analysis of the robot workspace
96(7)
Workspace
96(1)
Singularity branches
97(1)
Jacobian surfaces
98(1)
Concept of aspect
99(2)
t-connected subspaces
101(2)
Velocity transmission between joint space and task space
103(4)
Singular value decomposition
103(2)
Velocity ellipsoid: velocity transmission performance
105(2)
Static model
107(3)
Representation of a wrench
107(1)
Mapping of an external wrench into joint torques
107(1)
Velocity-force duality
108(2)
Second order kinematic model
110(1)
Kinematic model associated with the task coordinate representation
111(4)
Direction cosines
112(1)
Euler angles
113(1)
Roll-Pitch-Yaw angles
114(1)
Quaternions
114(1)
Conclusion
115(2)
Inverse kinematic model of serial robots
117(28)
Introduction
117(1)
General form of the kinematic model
117(1)
Inverse kinematic model for a regular case
118(3)
First method
119(1)
Second method
119(2)
Solution in the neighborhood of singularities
121(5)
Use of the pseudoinverse
122(1)
Use of the damped pseudoinverse
123(2)
Other approaches for controlling motion near singularities
125(1)
Inverse kinematic model of redundant robots
126(7)
Extended Jacobian
126(2)
Jacobian pseudoinverse
128(1)
Weighted pseudoinverse
128(1)
Jacobian pseudoinverse with an optimization term
129(1)
Avoiding joint limits
129(1)
Increasing the manipulability
130(1)
Task-priority concept
131(2)
Numerical calculation of the inverse geometric problem
133(1)
Minimum description of tasks
134(10)
Principle of the description
135(2)
Differential models associated with the minimum description of tasks
137(1)
Point contact (point on plane)
138(1)
Line contact (line on plane)
139(1)
Planar contact (plane on plane)
140(1)
Cylindrical groove joint (point on line)
140(1)
Cylindrical joint (line on line)
141(1)
Spherical joint (point on point)
142(1)
Revolute joint (line-point on line-point)
142(1)
Prismatic joint (plane-plane on plane-plane)
142(2)
Conclusion
144(1)
Geometric and kinematic models of complex chain robots
145(26)
Introduction
145(1)
Description of tree structured robots
145(3)
Description of robots with closed chains
148(5)
Direct geometric model of tree structured robots
153(1)
Direct geometric model of robots with closed chains
154(1)
Inverse geometric model of closed chain robots
155(1)
Resolution of the geometric constraint equations of a simple loop
155(7)
Introduction
155(1)
General principle
156(4)
Particular case of a parallelogram loop
160(2)
Kinematic model of complex chain robots
162(5)
Numerical calculation of qp and qc in terms of qa
167(1)
Number of degrees of freedom of robots with closed chains
168(1)
Classification of singular positions
169(1)
Conclusion
169(2)
Introduction to geometric and kinematic modeling of parallel robots
171(20)
Introduction
171(1)
Parallel robot definition
171(1)
Comparing performance of serial and parallel robots
172(2)
Number of degrees of freedom
174(1)
Parallel robot architectures
175(6)
Planar parallel robots
175(1)
Spatial parallel robots
176(1)
Three degree-of-freedom spatial robots
177(1)
Six degree-of-freedom spatial robots
177(2)
The Delta robot and its family
179(2)
Modeling the six degree-of-freedom parallel robots
181(8)
Geometric description
181(2)
Inverse geometric model
183(1)
Inverse kinematic model
184(1)
Direct geometric model
185(1)
Closed-form solution
185(3)
Numerical solution
188(1)
Singular configurations
189(1)
Conclusion
190(1)
Dynamic modeling of serial robots
191(44)
Introduction
191(1)
Notations
192(1)
Lagrange formulation
193(12)
Introduction
193(1)
General form of the dynamic equations
194(1)
Computation of the elements of A, C and Q
195(1)
Computation of the kinetic energy
195(3)
Computation of the potential energy
198(1)
Dynamic model properties
198(1)
Considering friction
199(2)
Considering the rotor inertia of actuators
201(1)
Considering the forces and moments exerted by the end-effector on the environment
201(1)
Relation between joint torques and actuator torques
201(1)
Modeling of robots with elastic joints
202(3)
Determination of the base inertial parameters
205(14)
Computation of the base parameters using the dynamic model
205(2)
Determination of the base parameters using the energy model
207(1)
Determination of the parameters having no effect on the dynamic model
208(2)
General grouping relations
210(2)
Particular grouped parameters
212(1)
Practical determination of the base parameters
213(1)
Considering the inertia of rotors
214(5)
Newton-Euler formulation
219(3)
Introduction
219(1)
Newton-Euler inverse dynamics linear in the inertial parameters
219(2)
Practical form of the Newton-Euler algorithm
221(1)
Real time computation of the inverse dynamic model
222(6)
Introduction
222(3)
Customization of the Newton-Euler formulation
225(2)
Utilization of the base inertial parameters
227(1)
Direct dynamic model
228(5)
Using the inverse dynamic model to solve the direct dynamic problem
228(2)
Recursive computation of the direct dynamic model
230(3)
Conclusion
233(2)
Dynamics of robots with complex structure
235(22)
Introduction
235(1)
Dynamic modeling of tree structured robots
235(7)
Lagrange equations
235(1)
Newton-Euler formulation
236(1)
Direct dynamic model of tree structured robots
236(1)
Determination of the base inertial parameters
237(1)
General grouping equations
238(2)
Particular grouped parameters
240(2)
Dynamic model of robots with closed kinematic chains
242(14)
Description of the system
242(1)
Computation of the inverse dynamic model
243(2)
Computation of the direct dynamic model
245(3)
Base inertial parameters of closed chain robots
248(1)
Base inertial parameters of parallelogram loops
249(1)
Practical computation of the base inertial parameters
250(6)
Conclusion
256(1)
Geometric calibration of robots
257(34)
Introduction
257(1)
Geometric parameters
258(3)
Robot parameters
258(1)
Parameters of the base frame
259(1)
End-effector parameters
260(1)
Generalized differential model of a robot
261(2)
Principle of geometric calibration
263(7)
General calibration model
263(2)
Identifiability of the geometric parameters
265(1)
Determination of the identifiable parameters
266(1)
Optimum calibration configurations
267(1)
Solution of the identification equation
268(2)
Calibration methods
270(9)
Calibration using the end-effector coordinates
270(2)
Calibration using distance measurement
272(1)
Calibration using location constraint and position constraint
273(1)
Calibration methods using plane constraint
274(1)
Calibration using plane equation
274(2)
Calibration using normal coordinates to the plane
276(3)
Correction and compensation of errors
279(3)
Calibration of parallel robots
282(3)
IGM calibration model
283(2)
DGM calibration model
285(1)
Measurement techniques for robot calibration
285(3)
Three-cable system
286(1)
Theodolites
286(1)
Laser tracking system
287(1)
Camera-type devices
287(1)
Conclusion
288(3)
Identification of the dynamic parameters
291(22)
Introduction
291(1)
Estimation of inertial parameters
292(1)
Principle of the identification procedure
292(8)
Resolution of the identification equations
293(2)
Identifiability of the dynamic parameters
295(1)
Estimation of the friction parameters
295(1)
Trajectory selection
296(1)
Trajectory optimization
296(2)
Sequential identification
298(1)
Calculation of the joint velocities and accelerations
298(1)
Calculation of joint torques
299(1)
Dynamic identification model
300(1)
Other approaches to the dynamic identification model
301(5)
Sequential formulation of the dynamic model
301(1)
Filtered dynamic model (reduced order dynamic model)
302(4)
Energy (or integral) identification model
306(3)
Principle of the energy model
306(2)
Power model
308(1)
Recommendations for experimental application
309(1)
Conclusion
310(3)
Trajectory generation
313(34)
Introduction
313(1)
Trajectory generation and control loops
314(1)
Point-to-point trajectory in the joint space
315(14)
Polynomial interpolation
316(1)
Linear interpolation
316(1)
Cubic polynomial
316(1)
Quintic polynomial
317(2)
Computation of the minimum traveling time
319(1)
Bang-bang acceleration profile
320(1)
Trapeze velocity profile
321(5)
Continuous acceleration profile with constant velocity phase
326(3)
Point-to-point trajectory in the task space
329(2)
Trajectory generation with via points
331(13)
Linear interpolations with continuous acceleration blends
331(1)
Joint space scheme
331(4)
Task space scheme
335(2)
Trajectory generation with cubic spline functions
337(1)
Principle of the method
337(3)
Calculation of the minimum traveling time on each segment
340(2)
Trajectory generation on a continuous path in the task space
342(2)
Conclusion
344(3)
Motion control
347(30)
Introduction
347(1)
Equations of motion
347(1)
PID control
348(5)
PID control in the joint space
348(2)
Stability analysis
350(2)
PID control in the task space
352(1)
Linearizing and decoupling control
353(7)
Introduction
353(1)
Computed torque control in the joint space
354(1)
Principle of the control
354(1)
Tracking control scheme
355(1)
Position control scheme
356(1)
Predictive dynamic control
357(1)
Practical computation of the computed torque control laws
357(1)
Computed torque control in the task space
358(2)
Passivity-based control
360(8)
Introduction
360(1)
Hamiltonian formulation of the robot dynamics
360(2)
Passivity-based position control
362(1)
Passivity-based tracking control
363(5)
Lyapunov-based method
368(1)
Adaptive control
368(8)
Introduction
368(1)
Adaptive feedback linearizing control
369(2)
Adaptive passivity-based control
371(5)
Conclusion
376(1)
Compliant motion control
377(70)
Introduction
377(1)
Description of a compliant motion
378(1)
Passive stiffness control
378(1)
Active stiffness control
379(2)
Impedance control
381(4)
Hybrid position/force control
385(8)
Parallel hybrid position/force control
386(5)
External hybrid control scheme
391(2)
Conclusion
393(2)
Appendices
Solution of the inverse geometric model equations (Table 4.1)
395(6)
Type 2
395(1)
Type 3
396(1)
Type 4
397(1)
Type 5
397(1)
Type 6
398(1)
Type 7
398(1)
Type 8
399(2)
The inverse robot
401(2)
Dyalitic elimination
403(2)
Solution of systems of linear equations
405(12)
Problem statement
405(1)
Resolution based on the generalized inverse
406(1)
Definitions
406(1)
Computation of a generalized inverse
406(1)
Resolution based on the pseudoinverse
407(1)
Definition
407(1)
Pseudoinverse computation methods
408(1)
Method requiring explicit computation of the rank
408(1)
Greville method
408(2)
Method based on the singular value decomposition of W
410(3)
Resolution based on the QR decomposition
413(1)
Full rank system
413(1)
Rank deficient system
414(3)
Numerical computation of the base parameters
417(4)
Introduction
417(1)
Base inertial parameters of serial and tree structured robots
418(2)
Base inertial parameters of closed loop robots
420(1)
Generality of the numerical method
420(1)
Recursive equations between the energy functions
421(6)
Recursive equation between the kinetic energy functions of serial robots
421(2)
Recursive equation between the potential energy functions of serial robots
423(1)
Recursive equation between the total energy functions of serial robots
424(1)
Expression of a(j)λj in the case of the tree structured robot
424(3)
Dynamic model of the Staubli RX-90 robot
427(4)
Computation of the inertia matrix of tree structured robots
431(4)
Inertial parameters of a composite link
431(2)
Computation of the inertia matrix
433(2)
Stability analysis using Lyapunov theory
435(4)
Autonomous systems
435(1)
Definition of stability
435(1)
Positive definite and positive semi-definite functions
436(1)
Lyapunov direct theorem (sufficient conditions)
436(1)
La Salle theorem and invariant set principle
437(1)
Non-autonomous systems
437(1)
Definition of stability
437(1)
Lyapunov direct method
437(2)
Computation of the dynamic control law in the task space
439(4)
Calculation of the location error ex
439(1)
Calculation of the velocity of the terminal link X
440(1)
Calculation of J q
441(1)
Calculation of J(q)-1 y
442(1)
Modified dynamic model
442(1)
Stability of passive systems
443(4)
Definitions
443(1)
Stability analysis of closed-loop positive feedback
444(1)
Stability properties of passive systems
445(2)
References 447(28)
Index 475