Muutke küpsiste eelistusi

E-raamat: Modeling of Nanotoxicity: Molecular Interactions of Nanomaterials with Bionanomachines

  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319153827
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 04-Sep-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319153827

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a comprehensive overview of the fundamentals of nanotoxicity modeling and its implications for the development of novel nanomedicines. It lays out the fundamentals of nanotoxicity modeling for an array of nanomaterial systems, ranging from carbon-based nanoparticles to noble metals, metal oxides, and quantum dots. The author illustrates how molecular (classical mechanics) and atomic (quantum mechanics) modeling approaches can be applied to bolster our understanding of many important aspects of this critical nanotoxicity issue. Each chapter is organized by types of nanomaterials for practicality, making this an ideal book for senior undergraduate students, graduate students, and researchers in nanotechnology, chemistry, physics, molecular biology, and computer science. It is also of interest to academic and industry professionals who work on nanodrug delivery and related biomedical applications, and aids readers in their biocompatibility assessment efforts in the

coming age of nanotechnology. This book also provides a critical assessment of advanced molecular modeling and other computational techniques to nanosafety, and highlights current and future biomedical applications of nanoparticles in relation to nanosafety.

Introduction.- Fullerene and Derivatives.- Carbon Nanotubes.- Graphene and Derivatives.- Graphyne and Derivatives.- Noble Metal Nanomaterials.- Metal Oxides and Related Nanostructures.- Quantum Dots and their Ligand Passivation.- Nanomedicine: Implications from Nanotoxicity.
1 Introduction
1(16)
1.1 Molecular Modeling Methods
3(2)
1.2 Nanotoxicity Modeling
5(5)
1.3 Nanomedicine: Implications from Nanotoxicity
10(7)
References
13(4)
2 Fullerene and Derivatives
17(28)
2.1 Introduction
17(1)
2.2 Fullerene Inhibition of HIV Protease
18(3)
2.3 Fullerene Induced Antibody and Related Interaction
21(2)
2.4 Antitumor Nanomedicinal Effect of Gd@C82(OH)22
23(8)
2.4.1 Inhibitory Mechanism of Gd@C82(OH)22 on MMP-9
24(5)
2.4.2 Mechanical Impact of Gd@C82(OH)22 on Collagen Complexes
29(2)
2.5 Gd@C82(OH)22 Inhibition of Protein--Protein Interaction
31(3)
2.5.1 Direct Inhibition of WW-Domain
31(2)
2.5.2 Indirect Inhibition of SH3-Domain
33(1)
2.6 Metallofullerenol Gd@C82(OH)22 Force Field Development
34(3)
2.6.1 Force Field Parameterization from Quantum Mechanics
35(1)
2.6.2 Validation of Gd@C82(OH)22 Force Field Parameters
35(2)
2.7 Summary and Future Perspectives
37(8)
References
38(7)
3 Carbon Nanotubes
45(16)
3.1 Introduction
45(1)
3.2 Protein--CNT Binding and Associated Nanotoxicity
46(2)
3.3 Potential Molecular Mechanisms of CNT's Toxicity
48(5)
3.3.1 Disruption of Protein Active Sites
49(2)
3.3.2 Competitive Binding with Ligands to Receptors
51(2)
3.4 Driving Forces for Protein--CNT Binding
53(2)
3.4.1 π--π Stacking Interaction
53(1)
3.4.2 Hydrophobic Interaction
54(1)
3.4.3 Electrostatic Interaction
55(1)
3.5 Summary and Future Perspectives
55(6)
References
56(5)
4 Graphene and Derivatives
61(28)
4.1 Introduction
61(1)
4.2 Graphene Disruption to Protein Structure and Function
62(5)
4.2.1 Graphene Interaction with a Model Protein
63(2)
4.2.2 Comparison Among C60, CNT, and Graphene
65(2)
4.3 Graphene Disruption to DNA
67(2)
4.4 Graphene Disruption to Cell Membranes
69(14)
4.4.1 E. coli Membranes
70(6)
4.4.2 Mammalian Cellular Membranes
76(7)
4.5 Summary and Future Perspective
83(6)
References
84(5)
5 Graphyne and Derivatives
89(12)
5.1 Introduction
89(2)
5.2 Graphyne-Mediated Interruption of a Protein--Protein Interaction
91(5)
5.2.1 Graphyne Cutting a Protein Dimer
93(2)
5.2.2 Molecular Mechanism of the Dimer Cutting
95(1)
5.3 Comparison with Graphene Insertion
96(2)
5.4 Summary and Future Perspectives
98(3)
References
98(3)
6 Noble Metal Nanomaterials
101(14)
6.1 Introduction
101(1)
6.2 Gold Nanomaterials
102(5)
6.2.1 Peptide-Coated Gold Nanocluster Inhibition of TrxR1
102(3)
6.2.2 Gold Nanorod Protein Corona with BSA
105(2)
6.3 Silver Nanomaterials
107(2)
6.4 Summary and Future Perspectives
109(6)
References
110(5)
7 Metal Oxides and Related Nanostructures
115(16)
7.1 Introduction
115(1)
7.2 TiO2 Nanoparticle Interaction with Proteins
116(6)
7.2.1 TiO2 Force Field Reparametrization
117(1)
7.2.2 TiO2 Interaction with SH3-Domain and HSA
118(4)
7.3 MoS2 Nanosheet Interaction with Proteins
122(3)
7.4 Nanotoxicity of Other Metal Oxides
125(1)
7.5 Summary and Future Perspectives
126(5)
References
127(4)
8 Quantum Dots and Their Ligand Passivation
131(16)
8.1 Introduction
131(2)
8.2 (CdSe)13 Coating with Ligands
133(5)
8.2.1 Blue-Shifts in UV-vis Spectra Due to Ligand Passivation
135(2)
8.2.2 Changes in Density of States (DOSs) upon Ligand Passivation
137(1)
8.3 (CdSe)13 Coating with Small Organics
138(3)
8.4 Summary and Future Perspectives
141(6)
References
142(5)
9 Nanomedicine: Implications from Nanotoxicity
147(22)
9.1 Introduction
147(1)
9.2 Antitumor Metallofullerenol Nanodrugs
148(6)
9.3 Antibacterial Graphene and Graphene Oxide
154(6)
9.3.1 Two Types of Molecular Mechanisms
154(3)
9.3.2 Applications as Green "Graphene-Bandages"
157(3)
9.4 Nanodrugs that Induce Autophagy
160(1)
9.5 Nanodrugs Assisted by External Triggers
161(2)
9.6 Summary and Future Implications
163(6)
References
164(5)
Appendix: The π--π Interactions Revisited: Comparison of Classical and Quantum Mechanical Calculations 169(20)
Index 189
Ruhong Zhou is currently a Distinguished Research Staff Scientist and Head of the Soft Matter Science Group at the IBM Thomas J. Watson Research Center; he is also an Adjunct Professor at the Chemistry Department of Columbia University. He serves as Editor-in-Chief of Current Physical Chemistry, Editor of (Nature) Scientific Reports, Guest Editor of Nanoscale, and is Editorial Board Member of six other international journals. He sits on the Board of Directors of the Telluride Science and Research Center (TSRC), and the Scientific Advisory Board of Center for Multiscale Theory and Simulation, University of Chicago. He was elected to AAAS Fellow and APS Fellow in 2011.