Muutke küpsiste eelistusi

E-raamat: Modeling and Simulation of Chemical Process Systems

  • Formaat: 518 pages
  • Ilmumisaeg: 08-Nov-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351339346
  • Formaat - PDF+DRM
  • Hind: 175,50 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 518 pages
  • Ilmumisaeg: 08-Nov-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781351339346

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this textbook, the author teaches readers how to model and simulate a unit process operation through developing mathematical model equations, solving model equations manually, and comparing results with those simulated through software. It covers both lumped parameter systems and distributed parameter systems, as well as using MATLAB and Simulink to solve the system model equations for both. Simplified partial differential equations are solved using COMSOL, an effective tool to solve PDE, using the fine element method. This book includes end of chapter problems and worked examples, and summarizes reader goals at the beginning of each chapter.

Preface xi
Acknowledgments xiii
Author xv
1 Introduction
1(38)
1.1 Background
1(1)
1.2 Mathematical Models
2(1)
1.3 Why Study Process Modeling and Simulation?
3(1)
1.4 Terminology of Process Modeling and Simulation
4(2)
1.4.1 State Variables and State Equations
4(1)
1.4.2 Steady State and Transient
4(1)
1.4.3 Lumped versus Distributed Parameters
5(1)
1.4.4 Model Verification
5(1)
1.4.5 Model Validation
6(1)
1.5 The Steps for Building a Mathematical Model
6(1)
1.6 Fundamental Balance Equations
6(6)
1.6.1 Material Balance
7(1)
1.6.2 Total and Component Balances
8(1)
1.6.3 Material Balance on Individual Components
9(1)
1.6.4 Energy Balance
10(1)
1.6.5 Momentum Balance
11(1)
1.7 Process Classification
12(2)
1.7.1 Continuous Process
13(1)
1.7.2 Batch Process
13(1)
1.7.3 Semibatch Process
14(1)
1.8 Types of Balances
14(1)
1.9 Procedure of Mass Balance
14(2)
1.9.1 Microscopic Balance
15(1)
1.9.2 Macroscopic Balance
16(1)
1.10 Transport Rates
16(6)
1.10.1 Mass Transport
17(1)
1.10.2 Momentum Transport
18(2)
1.10.3 Energy Transport
20(2)
1.11 Thermodynamic Relations
22(1)
1.12 Phase Equilibrium
23(3)
1.12.1 Flash Calculations
25(1)
1.13 Chemical Kinetics
26(1)
1.14 Process Control
27(1)
1.15 Number of Degrees of Freedom
28(2)
1.16 Model Solution
30(2)
1.17 Model Evaluation
32(3)
Problems
35(3)
References
38(1)
2 Lumped Parameter Systems
39(68)
2.1 Introduction
39(1)
2.2 Model Encountered in Material Balances Only
40(22)
2.2.1 Material Balance Without Reactions
40(1)
2.2.1.1 Degree of Freedom Analysis
41(5)
2.2.2 Material Balance for Chemical Reactors
46(12)
2.2.3 Gas Phase Reaction in a Pressurized Reactor
58(2)
2.2.4 Reaction with Mass Transfer
60(1)
2.2.4.1 Assumptions
60(1)
2.2.4.2 Liquid Phase
61(1)
2.2.4.3 Vapor Phase
61(1)
2.2.4.4 Degrees of Freedom Analysis
62(1)
2.3 Energy Balance
62(38)
Problems
100(5)
References
105(2)
3 Theory and Applications of Distributed Systems
107(48)
3.1 Introduction
107(1)
3.2 Mass Transport
108(6)
3.2.1 Mass Transfer in Cartesian Coordinate
109(2)
3.2.2 Component Continuity Equation
111(1)
3.2.2.1 Component Mass Continuity Equation
111(2)
3.2.2.2 Component Molar Continuity Equation
113(1)
3.3 Fluid Dynamics
114(4)
3.4 Energy Transport
118(3)
3.4.1 Energy Transport in Cartesian Coordinates
119(2)
3.4.2 Conversion Between the Coordinates
121(1)
3.5 Introduction of Equations of Change
121(5)
3.5.1 Equations of Change in Cartesian Coordinates
122(1)
3.5.2 Equations of Change in Cylindrical Coordinates
123(1)
3.5.2 Equations of Change in Spherical Coordinates
124(2)
3.6 Applications of the Equations of Change
126(25)
Problems
151(2)
References
153(2)
4 Computational Fluid Dynamics
155(68)
4.1 Introduction
155(1)
4.2 Equations of Motion
156(2)
4.2.1 Cartesian Coordinate
156(1)
4.2.2 Cylindrical Coordinates
156(1)
4.2.3 Spherical Coordinates
157(1)
4.2.4 Solving Procedure
157(1)
4.3 Fluid Dynamic Systems
158(6)
4.3.1 Velocity Profile in a Triangular Duct
158(1)
4.3.2 Fluid Flow in a Nuzzle
159(1)
4.3.3 Fluid Flow Past a Stationary Sphere
159(1)
4.3.3.1 COMSOL Simulation
160(1)
4.3.4 Incompressible Fluid Flows Past a Solid Flat Plate
160(3)
4.3.4.1 COMSOL Solution
163(1)
4.4 Application to Fluid Dynamics
164(54)
Problems
218(3)
References
221(2)
5 Mass Transport of Distributed Systems
223(50)
5.1 Introduction
223(1)
5.2 Diffusion of Gas through a Membrane Tube
224(3)
5.3 Mass Transfer with Chemical Reaction
227(3)
5.4 Plug Flow Reactor
230(2)
5.5 Diffusion of Gas in Solid
232(3)
5.5.1 Assumptions
233(2)
5.6 Diffusion with Chemical Reaction
235(3)
5.7 Leaching of Solute from Solid Particles
238(1)
5.8 Applied Examples t
239(30)
Problems
269(3)
References
272(1)
6 Heat Transfer Distributed Parameter Systems
273(90)
6.1 Introduction
273(2)
6.1.1 Equations of Energy
274(1)
6.2 Heat Transfer from a Fin
275(2)
6.3 Radial Temperature Gradients in an Annular Chemical Reactor
277(3)
6.4 Heat Transfer in a Nonisothermal Plug-Flow Reactor
280(1)
6.5 Temperature Profile across a Composite Plane Wall
281(4)
6.5.1 Energy Balance on Wall 1
283(1)
6.5.2 Energy Balance on Wall 2
284(1)
6.6 Applied Examples
285(73)
Problems
358(3)
References
361(2)
7 Case Studies
363(58)
7.1 Membrane Reactors
363(11)
7.1.1 Equilibrium Conversion
365(2)
7.1.2 Numerical Solution of Equilibrium Conversion
367(1)
7.1.3 Numerical Solution in Case of Hydrogen Permeation
368(3)
7.1.4 Variable Feed Concentration
371(2)
7.1.5 Effect of Membrane Thickness
373(1)
7.2 Absorption of Carbon Dioxide from Flue Gas
374(11)
7.2.1 Capture of Carbon Dioxide Using Fresh Water
374(1)
7.2.1.1 Model Equations
375(1)
7.2.1.2 COMSOL Simulation
376(4)
7.2.2 Capture of COz Using Aqueous Sodium Hydroxide
380(1)
7.2.2.1 Model Equations
380(1)
7.2.2.2 COMSOL Simulation
381(4)
7.3 Packed Bed Reactors
385(11)
7.3.1 Isothermal Packed Bed Reactor
386(1)
7.3.1.1 Model Development
386(3)
7.3.1.2 COMSOL Simulation
389(5)
7.3.3 Adiabatic Packed Bed Reactor
394(2)
7.4 Fluid Flow of Two Immiscible Liquids
396(3)
7.4.1 Model Development
396(1)
7.4.2 COMSOL Simulation
396(3)
7.5 Production of Propylene Glycol in Adiabatic Tubular Reactor
399(8)
7.5.1 Model Development
400(2)
7.5.1.1 Boundary Conditions
402(1)
7.5.2 COMSOL Simulation
403(4)
7.6 Coupling of Fluid and Heat Transfer (Multiphysics)
407(4)
7.7 Unsteady Diffusion of Contaminated Source from the Skin of a Pipe Line
411(3)
7.8 Maxwell-Stefan Diffusion
414(6)
7.8.1 Hydrogen Production
415(5)
References
420(1)
8 Computing Solutions of Ordinary Differential Equations
421(76)
8.1 Introduction
421(2)
8.2 Numerical Solution of Single Ordinary Equation
423(33)
8.2.1 Euler Method
424(5)
8.2.2 Modified Euler Method
429(4)
8.2.3 Midpoint Method
433(5)
8.2.4 Heun Predictor-Corrector Method
438(2)
8.2.5 Runge-Kutta Method
440(1)
8.2.5.1 Second-Order Runge-Kutta (RK2)
440(1)
8.2.5.2 Third-Order Runge-Kutta (RK3)
441(1)
8.2.5.3 Fourth-Order Runge-Kutta
442(14)
8.3 Simultaneous Systems of First-Order Differential Equations
456(3)
8.4 Summary
459(1)
Problems
459(3)
References
462(1)
9 Higher-Order Differential Equations
463(1)
9.1 Introduction
463(6)
9.2 Initial and Boundary Value Problems
469(1)
9.3 Shooting Method
470(9)
9.4 Simultaneous Ordinary Differential Equation
479(1)
9.5 Solving High-Order Differential Equations Using COMSOL
480(12)
Problems
492(4)
References
496(1)
Index 497
Nayef Ghasem is Professor of Chemical Engineering at the United Arab Emirates University, Al Ain, United Arab Emirates. He earned both BSc and MSc degrees from the Middle East Technical University, Ankara (Turkey), and earned his PhD from the University of Salford, Greater Manchester (UK). He teaches chemical process principles, natural gas processing, and process modeling and simulation as undergraduate courses along with other courses in chemical engineering. Previously, he taught these courses at the University of Malaya, Kuala Lumpur, Malaysia. He has published more than 50 journal papers, primarily in the areas of modeling and simulation, bifurcation theory, gasliquid separation using membrane contactor, and fabrication of polymeric hollow fiber membranes. He has also authored 2 books, Computer Methods in Chemical Engineering and Principles of Chemical Engineering Processes: Material and Energy Balances, Second Edition, published by CRC Press. Prof. Ghasem is a senior member of American Institute of Chemical Engineers.