|
1 Introduction: Additive/3D Printing Materials---Filaments, Functionalized Inks, and Powders |
|
|
1 | (8) |
|
|
5 | (4) |
|
|
6 | (3) |
|
2 Continuum Methods (CM): Basic Continuum Mechanics |
|
|
9 | (12) |
|
|
9 | (1) |
|
2.2 Kinematics of Deformations |
|
|
9 | (3) |
|
2.2.1 Deformation of Line Elements |
|
|
11 | (1) |
|
2.3 Equilibrium/Kinetics of Continua |
|
|
12 | (2) |
|
2.3.1 Postulates on Volume and Surface Quantities |
|
|
12 | (2) |
|
2.3.2 Balance Law Formulations |
|
|
14 | (1) |
|
2.4 The First Law of Thermodynamics/An Energy Balance |
|
|
14 | (2) |
|
2.5 Linearly Elastic Constitutive Equations |
|
|
16 | (5) |
|
2.5.1 The Infinitesimal Strain Case |
|
|
16 | (1) |
|
|
16 | (2) |
|
2.5.3 Material Component Interpretation |
|
|
18 | (2) |
|
|
20 | (1) |
|
3 CM Approaches: Characterization of Particle-Functionalized Materials |
|
|
21 | (10) |
|
|
21 | (1) |
|
3.2 Basic Micro--Macro Concepts |
|
|
22 | (9) |
|
|
23 | (1) |
|
3.2.2 The Average Strain Theorem |
|
|
24 | (1) |
|
3.2.3 The Average Stress Theorem |
|
|
25 | (1) |
|
3.2.4 Satisfaction of Hill's Energy Condition |
|
|
25 | (1) |
|
3.2.5 The Hill--Reuss--Voigt Bounds |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (3) |
|
4 CM Approaches: Estimation and Optimization of the Effective Properties of Mixtures |
|
|
31 | (12) |
|
|
31 | (1) |
|
4.2 Local Fields: Stresses and Strains |
|
|
32 | (2) |
|
4.3 Optimization: Formulation of a Cost Function |
|
|
34 | (6) |
|
4.4 Suboptimal Properties Due to Defects---Effects of Pores/voids |
|
|
40 | (3) |
|
|
41 | (2) |
|
5 CM Approaches: Numerical Thermo-Mechanical Formulations |
|
|
43 | (40) |
|
5.1 Transient Thermo-Mechanical Coupled Fields |
|
|
44 | (2) |
|
5.2 Iterative Staggering Scheme |
|
|
46 | (4) |
|
5.3 Temporal Discretization of Fields |
|
|
50 | (1) |
|
5.4 The Overall Solution Scheme |
|
|
51 | (3) |
|
|
54 | (5) |
|
5.6 Summary and Extensions |
|
|
59 | (3) |
|
5.7 Chapter Appendix 1: Summary of Spatial Finite Difference Stencils |
|
|
62 | (1) |
|
5.8 Chapter Appendix 2: Second-Order Temporal Discretization |
|
|
63 | (2) |
|
5.9 Chapter Appendix 3: Temporally Adaptive Iterative Methods |
|
|
65 | (2) |
|
5.10 Chapter Appendix 4: Laser Processing |
|
|
67 | (16) |
|
5.10.1 Formulations for Particulate-Laden Continua |
|
|
68 | (1) |
|
5.10.2 A Specific Numerical Example---Controlled Heating |
|
|
69 | (1) |
|
5.10.3 Numerical Examples |
|
|
70 | (5) |
|
5.10.4 Extensions: Advanced Models for Conduction Utilizing Thermal Relaxation |
|
|
75 | (3) |
|
|
78 | (5) |
|
6 PART II---Discrete Element Method (DEM) Approaches: Dynamic Powder Deposition |
|
|
83 | (38) |
|
6.1 Direct Particle Representation/Calculations |
|
|
86 | (7) |
|
6.1.1 Comments on Rolling |
|
|
86 | (1) |
|
6.1.2 Particle-to-particle Contact Forces |
|
|
87 | (1) |
|
6.1.3 Particle-Wall Contact |
|
|
88 | (1) |
|
6.1.4 Contact Dissipation |
|
|
88 | (1) |
|
6.1.5 Regularized Contact Friction Models |
|
|
89 | (1) |
|
6.1.6 Particle-to-particle Bonding Relation |
|
|
90 | (1) |
|
6.1.7 Electromagnetic Forces |
|
|
90 | (1) |
|
6.1.8 Inter-particle Near-Field Interaction |
|
|
91 | (1) |
|
|
92 | (1) |
|
6.1.10 Interstitial Damping |
|
|
92 | (1) |
|
|
93 | (4) |
|
6.2.1 Iterative (Implicit) Solution Method |
|
|
93 | (2) |
|
|
95 | (2) |
|
|
97 | (3) |
|
6.3.1 Heat Transfer Model |
|
|
97 | (1) |
|
6.3.2 Lasers---Various Levels of Description |
|
|
98 | (2) |
|
6.3.3 Numerical Integration |
|
|
100 | (1) |
|
6.4 Total System Coupling: Multiphysical Staggering Scheme |
|
|
100 | (4) |
|
6.4.1 A General Iterative Framework |
|
|
101 | (1) |
|
6.4.2 Overall Solution Algorithm |
|
|
101 | (1) |
|
|
102 | (2) |
|
|
104 | (4) |
|
6.6 Summary for DEM Approaches |
|
|
108 | (1) |
|
6.7 Chapter Appendix 1: Contact Area Parameter and Alternative Models |
|
|
109 | (3) |
|
6.8 Chapter Appendix 2: Phase Transformations |
|
|
112 | (9) |
|
|
113 | (8) |
|
7 DEM Extensions: Electrically Driven Deposition of Polydisperse Particulate Powder Mixtures |
|
|
121 | (14) |
|
|
121 | (1) |
|
|
122 | (1) |
|
7.3 Numerical Examples of Involving Polydisperse Depositions |
|
|
123 | (12) |
|
|
133 | (2) |
|
8 DEM Extensions: Electrically Aided Compaction and Sintering |
|
|
135 | (20) |
|
|
135 | (2) |
|
|
135 | (2) |
|
8.2 Direct Particle Representation |
|
|
137 | (1) |
|
|
138 | (2) |
|
8.3.1 Governing Equations |
|
|
138 | (1) |
|
8.3.2 Numerical Integration |
|
|
139 | (1) |
|
8.4 Modeling of Current Flow |
|
|
140 | (4) |
|
8.4.1 Particle Model Simplification |
|
|
140 | (1) |
|
8.4.2 Iterative Flux Summation/Solution Process |
|
|
141 | (2) |
|
8.4.3 Overall Solution Algorithm |
|
|
143 | (1) |
|
|
144 | (4) |
|
8.5.1 STEP 1: Pouring the Particles |
|
|
145 | (1) |
|
8.5.2 STEP 2: Compacting the Particles |
|
|
145 | (3) |
|
8.6 Extensions and Conclusions |
|
|
148 | (1) |
|
8.7 Chapter Appendix 1: Joule-Heating |
|
|
149 | (1) |
|
8.7.1 Characterizing Electrical Losses |
|
|
149 | (1) |
|
|
150 | (1) |
|
8.8 Chapter Appendix 2: Time-Scaling Arguments for ∂p/∂t = 0 |
|
|
150 | (5) |
|
|
151 | (4) |
|
9 DEM Extensions: Flexible Substrate Models |
|
|
155 | (16) |
|
|
155 | (1) |
|
9.2 A Multibody Dynamics Model for the Particles |
|
|
156 | (1) |
|
9.2.1 Overall Contributing Forces |
|
|
156 | (1) |
|
9.3 Induced Substrate Stresses |
|
|
157 | (4) |
|
9.3.1 Individual Particle Contributions---Normal Load |
|
|
157 | (1) |
|
9.3.2 Individual Particle Contributions---Tangential Load |
|
|
158 | (1) |
|
9.3.3 Superposition of Contributions for the Total Substrate Stresses |
|
|
159 | (2) |
|
|
161 | (4) |
|
9.5 Summary, Conclusions, and Extensions |
|
|
165 | (6) |
|
|
166 | (5) |
|
10 DEM Extensions: Higher-Fidelity Laser Modeling |
|
|
171 | (26) |
|
10.1 Propagation of Electromagnetic Energy |
|
|
172 | (8) |
|
10.1.1 Electromagnetic Wave Propagation |
|
|
172 | (1) |
|
10.1.2 Plane Harmonic Wave Fronts |
|
|
173 | (1) |
|
10.1.3 Special Case: Natural (Random) Electromagnetic Energy Propagation |
|
|
174 | (1) |
|
10.1.4 Beam Decomposition into Rays |
|
|
174 | (6) |
|
10.2 Thermal Conversion of Beam (Optical) Losses |
|
|
180 | (2) |
|
10.2.1 Algorithmic Details |
|
|
181 | (1) |
|
10.3 Phase Transformations: Solid ⇒ Liquid ⇒ Vapor |
|
|
182 | (3) |
|
10.3.1 Optional Time Scaling and Simulation Acceleration |
|
|
183 | (2) |
|
|
185 | (5) |
|
10.5 Summary and Extensions |
|
|
190 | (2) |
|
10.6 Chapter Appendix: Geometrical Ray Theory |
|
|
192 | (5) |
|
|
194 | (3) |
|
11 DEM Extensions: Acoustical Pre-Processing |
|
|
197 | (22) |
|
|
197 | (3) |
|
11.2 Dynamic Response of an Agglomeration |
|
|
200 | (1) |
|
11.3 Particle-Shock Wave Contact |
|
|
200 | (5) |
|
11.3.1 Ray-Tracing: Incidence, Reflection, and Transmission |
|
|
201 | (2) |
|
11.3.2 Acoustical-Pulse Computational Algorithm |
|
|
203 | (1) |
|
11.3.3 Iterative (Implicit) Solution Method Algorithm |
|
|
204 | (1) |
|
|
205 | (3) |
|
|
208 | (3) |
|
11.6 Chapter Appendix: Basics of Acoustics |
|
|
211 | (8) |
|
|
214 | (5) |
|
12 Summary and Closing Remarks |
|
|
219 | (6) |
|
|
222 | (3) |
Monograph Appendix A Elementary Notation and Mathematical Operations |
|
225 | (8) |
Monograph Appendix B CM Approaches: Effective Electrical Properties of Mixtures |
|
233 | (24) |
Monograph Appendix C CM Approaches: Extensions to Multiphase Materials |
|
257 | (10) |
Monograph Appendix D Pumping of Fluidized Particle-Laden Materials |
|
267 | (12) |
Monograph Appendix E Hybrid DEM-CM Approaches for Particle-Functionalized Fluids |
|
279 | |