Muutke küpsiste eelistusi

E-raamat: Modelling and Control of Dynamic Systems Using Gaussian Process Models

  • Formaat: PDF+DRM
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 21-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319210216
  • Formaat - PDF+DRM
  • Hind: 147,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Advances in Industrial Control
  • Ilmumisaeg: 21-Nov-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319210216

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control and then fault diagnosis and isolation. The book is illustrated by extensive use of examples, line drawings and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from more than 150 successful applications for various industrial users including:
  • a gas–liquid separator;
  • urban traffic control;
  • prediction of atmospheric ozone concentration; and
  • fault detection in a hydraulic plant.

A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.

1 Introduction
1(20)
1.1 Introduction to Gaussian-Process Regression
3(13)
1.1.1 Preliminaries
3(4)
1.1.2 Gaussian-Process Regression
7(9)
1.2 Relevance
16(1)
1.3 Outline of the Book
17(4)
References
18(3)
2 System Identification with GP Models
21(82)
2.1 The Model Purpose
25(1)
2.2 Obtaining Data---Design of the Experiment, the Experiment Itself and Data Processing
26(2)
2.3 Model Setup
28(19)
2.3.1 Model Structure
28(5)
2.3.2 Selection of Regressors
33(2)
2.3.3 Covariance Functions
35(12)
2.4 GP Model Selection
47(15)
2.4.1 Bayesian Model Inference
48(2)
2.4.2 Marginal Likelihood---Evidence Maximisation
50(6)
2.4.3 Estimation and Model Structure
56(3)
2.4.4 Selection of Mean Function
59(2)
2.4.5 Asymptotic Properties of GP Models
61(1)
2.5 Computational Implementation
62(13)
2.5.1 Direct Implementation
62(2)
2.5.2 Indirect Implementation
64(6)
2.5.3 Evolving GP Models
70(5)
2.6 Validation
75(5)
2.7 Dynamic Model Simulation
80(7)
2.7.1 Numerical Approximation
81(1)
2.7.2 Analytical Approximation of Statistical Moments with a Taylor Expansion
81(1)
2.7.3 Unscented Transformation
82(1)
2.7.4 Analytical Approximation with Exact Matching of Statistical Moments
83(1)
2.7.5 Propagation of Uncertainty
84(2)
2.7.6 When to Use Uncertainty Propagation?
86(1)
2.8 An Example of GP Model Identification
87(16)
References
95(8)
3 Incorporation of Prior Knowledge
103(44)
3.1 Different Prior Knowledge and Its Incorporation
103(4)
3.1.1 Changing Input--Output Data
104(2)
3.1.2 Changing the Covariance Function
106(1)
3.1.3 Combination with the Presumed Structure
106(1)
3.2 Wiener and Hammerstein GP Models
107(11)
3.2.1 GP Modelling Used in the Wiener Model
108(5)
3.2.2 GP Modelling Used in the Hammerstein Model
113(5)
3.3 Incorporation of Local Models
118(29)
3.3.1 Local Models Incorporated into a GP Model
122(10)
3.3.2 Fixed-Structure GP Model
132(11)
References
143(4)
4 Control with GP Models
147(62)
4.1 Control with an Inverse Dynamics Model
150(5)
4.2 Optimal Control
155(3)
4.3 Model Predictive Control
158(28)
4.4 Adaptive Control
186(2)
4.5 Gain Scheduling
188(5)
4.6 Model Identification Adaptive Control
193(5)
4.7 Control Using Iterative Learning
198(11)
References
203(6)
5 Trends, Challenges and Research Opportunities
209(4)
References
211(2)
6 Case Studies
213(40)
6.1 Gas--Liquid Separator Modelling and Control
214(16)
6.2 Faulty Measurements Detection and Reconstruction in Urban Traffic
230(11)
6.3 Prediction of Ozone Concentration in the Air
241(12)
References
250(3)
Appendix A Mathematical Preliminaries 253(4)
Appendix B Predictions 257(6)
Appendix C Matlab Code 263(2)
Index 265
Ju Kocijan is a senior research fellow at the Department of Systems and Control, Jozef Stefan Institute, the leading Slovenian research institute in the field of natural sciences and engineering, and a Professor of Electrical Engineering at the University of Nova Gorica, Slovenia. His past experience in the field of control engineering includes teaching and research at the University of Ljubljana and visiting research and teaching posts at several European universities and research institutes. He has been active in applied research in automatic control through numerous domestic and international research grants and projects, in a considerable number of which he acted as project leader. His research interests include the modelling of dynamic systems with Gaussian process models, control based on Gaussian process models, multiple-model approaches to modelling and control, applied nonlinear control, Individual Channel Analysis and Design. His other experience includes: serving as one of the editors of the Engineering Applications of Artificial Intelligence journal and on the editorial boards of other research journals, serving as a member of IFAC Technical committee on Computational Intelligence in Control, actively participating as a member of numerous scientific-meeting international programme and organising committees. Prof. Kocijan is a member of various national and international professional societies in the field of automatic control, modelling and simulation.