Muutke küpsiste eelistusi

E-raamat: Modelling of Convective Heat and Mass Transfer in Rotating Flows

  • Formaat: PDF+DRM
  • Sari: Mathematical Engineering
  • Ilmumisaeg: 24-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319209616
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Mathematical Engineering
  • Ilmumisaeg: 24-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319209616

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral method

s, self-similar and analytical solutions. The book will be a valuable read for research experts and practitioners in the field of heat and mass transfer.
1 Overview of Rotating Flows
1(10)
1.1 Applications of Rotating Flows
1(1)
1.2 Volume Forces and Their Description
2(2)
1.3 Differential Equations of Continuity, Momentum, and Heat Transfer
4(4)
1.4 Differential Equation of Convective Diffusion
8(3)
References
8(3)
2 Mathematical Modeling of Convective Heat Transfer in Rotating-Disk Systems
11(26)
2.1 Differential and Integral Equations
11(4)
2.1.1 Navier-Stokes and Energy Equations in Differential Form
11(2)
2.1.2 Differential Equations of the Boundary Layer
13(1)
2.1.3 Integral Equations of the Boundary Layer
14(1)
2.2 Methods of Solution
15(2)
2.2.1 Self-similar Solution
15(1)
2.2.2 Approximate Analytical Methods for Laminar Flow
16(1)
2.2.3 Numerical Methods
17(1)
2.3 Integral Methods
17(5)
2.3.1 Momentum Boundary Layer
17(4)
2.3.2 Thermal Boundary Layer
21(1)
2.4 Improved Integral Method
22(7)
2.4.1 Structure of the Method
22(1)
2.4.2 Turbulent Flow: Velocity and Temperature Profiles
23(1)
2.4.3 Surface Friction and Heat Transfer
24(5)
2.5 Disk Rotation in a Fluid Rotating as a Solid Body and Simultaneous Accelerating Imposed Radial Flow
29(8)
References
31(6)
3 Free Rotating Disk
37(44)
3.1 Laminar Flow
37(3)
3.2 Transition to Turbulent Flow
40(3)
3.3 Turbulent Flow
43(14)
3.3.1 Parameters of the Boundary Layer
43(3)
3.3.2 Surface Heat Transfer: Different Experiments and Solutions
46(2)
3.3.3 Effect of Approximation of the Radial Velocity Profile
48(6)
3.3.4 Arbitrary Distribution of the Wall Temperature
54(3)
3.4 Generalized Analytical Solution for Laminar and Turbulent Flow
57(3)
3.5 Finding a Wall Temperature Distribution for Arbitrary Nusselt Numbers
60(9)
3.5.1 Solution of the Problem
60(2)
3.5.2 The Limiting Case of the Solution
62(1)
3.5.3 Properties of the Solution for the Temperature Difference on the Wall
62(1)
3.5.4 Analysis of the Solution
63(6)
3.6 Theory of Local Modelling
69(1)
3.7 Unsteady Heat Transfer
70(11)
3.7.1 Transient Experimental Technique
70(1)
3.7.2 Self-similar Equations for Unsteady Convective Heat Transfer
71(1)
3.7.3 Cooling of an Isothermal Rotating Disk
72(1)
3.7.4 Unsteady Two-Dimensional Heat Conduction in a Non-uniformly Heated Disk
73(2)
References
75(6)
4 Forced External Flow Over a Rotating Disk
81(46)
4.1 Rotating Disk in a Fluid Rotating as a Solid Body
81(14)
4.1.1 Turbulent Flow
81(3)
4.1.2 Laminar Flow
84(11)
4.2 Flow Impingement onto an Orthogonal Disk
95(19)
4.2.1 Experimental and Computational Data of Different Authors
95(4)
4.2.2 Turbulent Flow
99(15)
4.3 Forced Outward Flow Between Corotating Disks
114(13)
4.3.1 Ekman Layers
114(2)
4.3.2 Flow Structure in Forced Outward Flow Between Corotating Disks
116(1)
4.3.3 Radial Variation of the Swirl Parameter
117(2)
4.3.4 Local Nusselt Numbers
119(2)
4.3.5 Effect of the Radial Distribution of the Disk Temperature
121(2)
References
123(4)
5 Heat and Mass Transfer in Rotating Cone-and-Disk Systems for Laminar Flows
127(18)
5.1 General Characterization of the Problem
127(2)
5.2 Self-similar Navier--Stokes and Energy Equations
129(3)
5.3 Rotating Disk and/or Cone
132(8)
5.3.1 Numerical Values of Parameters in the Computations
132(1)
5.3.2 Rotating Cone and Stationary Disk
132(3)
5.3.3 Rotating Disk and Stationary Cone
135(1)
5.3.4 Effects of Prandtl and Schmidt Numbers
135(3)
5.3.5 Co-rotating Disk and Cone
138(1)
5.3.6 Counter-Rotating Disk and Cone
139(1)
5.4 Radially Outward Swirling Flow in a Stationary Conical Diffuser
140(5)
References
142(3)
6 Heat and Mass Transfer of a Rotating Disk for Large Prandtl and Schmidt Numbers
145(26)
6.1 Laminar Flow
145(7)
6.2 Transitional and Turbulent Flow for the Prandtl and Schmidt Numbers Moderately Different from Unity
152(6)
6.3 Transitional and Turbulent Flow at High Schmidt Numbers
158(4)
6.4 An Integral Method for Pr and 5c Numbers Much Larger Than Unity
162(9)
References
168(3)
7 Convective Heat Transfer in a Pipe Rotating Around a Parallel Axis
171(22)
7.1 Experiments and Simulations of Different Authors
171(3)
7.2 Computational Model
174(3)
7.2.1 Simulation Parameters
175(1)
7.2.2 Choice and Validation of the Turbulence Model
175(2)
7.3 Circular Pipe: Effect of the Angle of Attack
177(5)
7.4 Elliptic Pipe
182(11)
7.4.1 Fixed Hydraulic Diameter
183(4)
7.4.2 Fixed Equivalent Diameter
187(3)
7.4.3 Friction Factor in Rotating Pipes
190(1)
References
191(2)
8 Varying Aspect Ratio Two-Pass Internal Ribbed Cooling Channels with 180° Bends
193(40)
8.1 Experiments and Simulations of Different Authors
193(3)
8.2 Single Periodic Ribbed Segment with H/W = 4:1, 2:1 and 1:1
196(8)
8.2.1 Geometry and Flow Parameters
197(1)
8.2.2 Numerical Methodology
198(1)
8.2.3 Comparative Flow Pattern
199(1)
8.2.4 Heat Transfer and Pressure Drop: H/W =4:1
200(2)
8.2.5 Heat Transfer: H/W = 2:1 and 1:1
202(2)
8.3 Rectangular Ribbed Channel with H/W = 2:1 Inlet, H/W = 1:1 Outlet
204(11)
8.3.1 Geometry and Flow Parameters
204(1)
8.3.2 Numerical Methodology
205(1)
8.3.3 Smooth Channel
205(3)
8.3.4 Ribbed Channel: Fluid Flow
208(2)
8.3.5 Ribbed Channel: Heat Transfer
210(5)
8.4 Rectangular Smooth Channel with H/W =3:1 Inlet, H/W= 1:1 Outlet
215(7)
8.4.1 Geometry and Flow Parameters
215(1)
8.4.2 Numerical Methodology
216(3)
8.4.3 Smooth Periodic Segment
219(1)
8.4.4 Two-Pass Smooth Channel: Fluid Flow and Heat Transfer
219(3)
8.5 Rectangular Ribbed Channels with H/W = 3:1 Inlet, H/W = 1:1 Outlet
222(11)
8.5.1 Geometry and Flow Parameters
222(1)
8.5.2 Numerical Methodology
223(1)
8.5.3 Ribbed Periodic Segment
224(1)
8.5.4 Two-Pass Ribbed Channel: Fluid Flow and Heat Transfer
224(4)
References
228(5)
9 Summary and Conclusions
233