Muutke küpsiste eelistusi

E-raamat: Modelling and Reasoning with Vague Concepts

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This volume introduces a formal representation framework for modelling and reasoning, that allows us to quantify the uncertainty inherent in the use of vague descriptions to convey information between intelligent agents. This can then be applied across a range of applications areas in automated reasoning and learning. The utility of the framework is demonstrated by applying it to problems in data analysis where the aim is to infer effective and informative models expressed as logical rules and relations involving vague concept descriptions. The author also introduces a number of learning algorithms within the framework that can be used for both classification and prediction (regression) problems. It is shown how models of this kind can be fused with qualitative background knowledge such as that provided by domain experts. The proposed algorithms will be compared with existing learning methods on a range of benchmark databases such as those from the UCI repository.

Vagueness is central to the flexibility and robustness of natural language descriptions. Vague concepts are robust to the imprecision of our perceptions, while still allowing us to convey useful, and sometimes vital, information. The study of vagueness in Artificial Intelligence (AI) is therefore motivated by the desire to incorporate this robustness and flexibility into intelligent computer systems. Such a goal, however, requires a formal model of vague concepts that will allow us to quantify and manipulate the uncertainty resulting from their use as a means of passing information between autonomous agents.This volume outlines a formal representation framework for modelling and reasoning with vague concepts in Artificial Intelligence. The new calculus has many applications, especially in automated reasoning, learning, data analysis and information fusion. This book gives a rigorous introduction to label semantics theory, illustrated with many examples, and suggests clear operational interpretations of the proposed measures. It also provides a detailed description of how the theory can be applied in data analysis and information fusion based on a range of benchmark problems.
List of Figures xi
Preface xix
Acknowledgments xxi
Foreword xxiii
1. INTRODUCTION 1(8)
2. VAGUE CONCEPTS AND FUZZY SETS 9(32)
2.1 Fuzzy Set Theory
10(5)
2.2 Functionality and Truth-Functionality
15(3)
2.3 Operational Semantics for Membership Functions
18(23)
2.3.1 Prototype Semantics
19(3)
2.3.2 Risk/Betting Semantics
22(2)
2.3.3 Probabilistic Semantics
24(79)
2.3.3.1 Random Set Semantics
25(4)
2.3.3.2 Voting and Context Model Semantics
29(7)
2.3.3.3 Likelihood Semantics
36(5)
3. LABEL SEMANTICS 41(44)
3.1 Introduction and Motivation
41(2)
3.2 Appropriateness Measures and Mass Assignments on Labels
43(1)
3.3 Label Expressions and λ-Sets
43(2)
3.4 A Voting Model for Label Semantics
45(2)
3.5 Properties of Appropriateness Measures
47(2)
3.6 Functional Label Semantics
49(12)
3.7 Relating Appropriateness Measures to Dempster-Shafer Theory
61(1)
3.8 Mass Selection Functions based on t-norms
62(7)
3.9 Alternative Mass Selection Functions
69(2)
3.10 An Axiomatic Approach to Appropriateness Measures
71(5)
3.11 Label Semantics as a Model of Assertions
76(3)
3.12 Relating Label Semantics to Existing Theories of Vagueness
79(6)
4. MULTI-DIMENSIONAL AND MULTI-INSTANCE LABEL SEMANTICS 85(18)
4.1 Descriptions Based on Many Attributes
85(1)
4.2 Multi-dimensional Label Expressions and λ-Sets
86(1)
4.3 Properties of Multi-dimensional Appropriateness Measures
87(7)
4.4 Describing Multiple Objects
94(9)
5. INFORMATION FROM VAGUE CONCEPTS 103(36)
5.1 Possibility Theory
103(5)
5.1.1 An Imprecise Probability Interpretation of Possibility Theory
105(3)
5.2 The Probability of Fuzzy Sets
108(4)
5.3 Bayesian Conditioning in Label Semantics
112(2)
5.4 Possibilistic Conditioning in Label Semantics
114(6)
5.5 Matching Concepts
120(10)
5.5.1 Conditional Probability and Possibility given Fuzzy Sets
120(7)
5.5.2 Conditional Probability in Label Semantics
127(3)
5.6 Conditioning From Mass Assignments in Label Semantics
130(9)
6. LEARNING LINGUISTIC MODELS FROM DATA 139(50)
6.1 Defining Labels for Data Modelling
140(1)
6.2 Bayesian Classification using Mass Relations
141(12)
6.2.1 Grouping Algorithms for Learning Dependencies in Mass Relations
147(4)
6.2.2 Mass Relations based on Clustering Algorithms
151(2)
6.3 Prediction using Mass Relations
153(5)
6.4 Qualitative Information from Mass Relations
158(7)
6.5 Learning Linguistic Decision Trees
165(14)
6.5.1 The LID3 Algorithm
170(3)
6.5.2 Forward Merging of Branches
173(6)
6.6 Prediction using Decision Trees
179(4)
6.7 Query evaluation and Inference from Linguistic Decision Trees
183(6)
7. FUSING KNOWLEDGE AND DATA 189(32)
7.1 From Label Expressions to Informative Priors
190(13)
7.2 Combining Label Expressions with Data
203(18)
7.2.1 Fusion in Classification Problems
205(5)
7.2.2 Reliability Analysis
210(11)
8. NON-ADDITIVE APPROPRIATENESS MEASURES 221(14)
8.1 Properties of Generalised Appropriateness Measures
222(4)
8.2 Possibilistic Appropriateness Measures
226(3)
8.3 An Axiomatic Approach to Generalised Appropriateness Measures
229(3)
8.4 The Law of Excluded Middle
232(3)
References 235(10)
Index 245