Muutke küpsiste eelistusi

E-raamat: Modelling of Simplified Dynamical Systems

  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642560989
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 06-Dec-2012
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642560989

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Problems involving synthesis of mathematical models of various physical systems, making use of these models in practice and verifying them qualitatively has - come an especially important area of research since more and more physical - periments are being replaced by computer simulations. Such simulations should make it possible to carry out a comprehensive analysis of the various properties of the system being modelled. Most importantly its dynamic properties can be - dressed in a situation where this would be difficult or even impossible to achieve through a direct physical experiment. To carry out a simulation of a real, phy- cally existing system it is necessary to have its mathematical description; the s- tem being described mathematically by equations, which include certain variables, their derivatives and integrals. If a single independent variable is sufficient in - der to describe the system, then derivatives and integrals with respect to only that variable will appear in the equations. Differentiation of the equation allows the integrals to be eliminated and produces an equation which includes derivatives with respect to only one independent variable i. e. an ordinary differential equation. In practice, most physical systems can be described with sufficient accuracy by linear differential equations with time invariant coefficients. Chapter 2 is devoted to the description of models by such equations, with time as the independent va- able.

Muu info

Springer Book Archives
1. Introduction.-
2. Mathematical Models.- 2.1. Differential equations.-
2.2. Transfer function.- 2.3. State equations.- 2.4. Models of standards.-
2.5. Examples.-
3. System Parameters.- 3.1. Overshoot.- 3.2. Damping factor.-
3.3. Half-time.- 3.4. Equivalent time delay.- 3.5. Time constants.- 3.6.
Resonance angular frequency.-
4. Model Synthesis.- 4.1. Algebraic
polynomials.- 4.2. The least squares method.- 4.3. Cubic splines.- 4.4.
Square of frequency response method.- 4.5. The Maclaurin series method.- 4.6.
Multi-inertial models.- 4.7. Weighted means method.- 4.8. Smoothing
functions.- 4.9. Kalman filter.- 4.10. Examples.-
5. Simplification Of
Models.- 5.1. The least-squares approximation.- 5.2. The Rao-Lamba method.-
5.3. Criterion of consistency of model response derivatives at the origin.-
5.4. Reduction of state matrix order with selected eigenvalues retained.-
5.5. Simplification of models using the Routh table coefficients.- 5.6.
Simplification of models by means of Routh table and Schwarz matrix.- 5.7.
Simplification of models by comparison of characteristic equation
coefficients.- 5.8. Examples.-
6. Maximum Mapping Errors.- 6.1. Input signals
with one constraint.- 6.2. Input signals with two constraints.- 6.3.
Examples.-
7. Signals Maximising The Integral-Square-Error In The Process Of
Models Optimisation.- 7.1. Optimisation of models in the case of the high
value of primary mapping error. Optimisation of Butterworth filters.- 7.2.
Examples.- 7.3. Optimisation of models in the case of the small value of
primary mapping error.- 7.4. Examples.- References.