Muutke küpsiste eelistusi

E-raamat: Modelling, Simulation and Control of Non-linear Dynamical Systems: An Intelligent Approach Using Soft Computing and Fractal Theory

(Tijuana Institute of Technology, Tijuana, Mexico),
  • Formaat: 262 pages
  • Ilmumisaeg: 25-Oct-2001
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781420024524
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 76,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 262 pages
  • Ilmumisaeg: 25-Oct-2001
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781420024524
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

These authors use soft computing techniques and fractal theory in this new approach to mathematical modeling, simulation and control of complexion-linear dynamical systems. First, a new fuzzy-fractal approach to automated mathematical modeling of non-linear dynamical systems is presented. It is illustrated with examples on the PROLOG programming language. Second, a new fuzzy-genetic approach to automated simulation of dynamical systems is presented. It is illustrated with examples in the MATLAB programming language. Third, a new method for model-based adaptive control using a neuro-fussy fractal approach is combined with the methods mentioned above. This method is illustrated with MATLAB. Finally, applications of these new methods are presented, in the areas such as biochemical processes, robotic systems, manufacturing, food industry and chemical processes.
Preface ix
Introduction to Modelling, Simulation and Control of Non-Linear Dynamical Systems
1(8)
Modelling and Simulation of Non-Linear Dynamical Systems
2(3)
Control of Non-Linear Dynamical Systems
5(4)
Fuzzy Logic for Modelling
9(20)
Fuzzy Set Theory
10(6)
Fuzzy Reasoning
16(4)
Fuzzy Inference Systems
20(6)
Fuzzy Modelling
26(2)
Summary
28(1)
Neural Networks For Control
29(36)
Backpropagation for Feedforward Networks
32(8)
The backpropagation learning algorithm
33(3)
Backpropagation multilayer perceptrons
36(4)
Adaptive Neuro-Fuzzy Inference Systems
40(5)
ANFIS architecture
40(3)
Learning algorithm
43(2)
Neuro-Fuzzy Control
45(7)
Inverse learning
46(3)
Specialized learning
49(3)
Adaptive Model-Based Neuro-Control
52(12)
Indirect neuro-control
53(5)
Direct neuro-control
58(5)
Parameterized neuro-control
63(1)
Summary
64(1)
Genetic Algorithms and Fractal Theory for Modelling and Simulation
65(16)
Genetic Algorithms
67(5)
Simulated Annealing
72(3)
Basic Concepts of Fractal Theory
75(5)
Summary
80(1)
Fuzzy-Fractal Approach for Automated Mathematical Modelling
81(16)
The Problem of Automated Mathematical Modelling
83(3)
A Fuzzy-Fractal Method for Automated Modelling
86(2)
Implementation of the Method for Automated Modelling
88(6)
Description of the time series analysis module
88(2)
Description of the expert selection module
90(2)
Description of the best model selection module
92(2)
Comparison with Related Work
94(1)
Summary
94(3)
Fuzzy-Genetic Approach for Automated Simulation
97(16)
The Problem of Automated Simulation
97(9)
Numerical simulation of dynamical systems
98(1)
Behavior identification for dynamical systems
99(5)
Automated simulation of dynamical systems
104(2)
Method for Automated Parameter Selection using Genetic Algorithms
106(2)
Method for Dynamic Behavior Identification using Fuzzy Logic
108(4)
Behavior identification based on the analytical properties of the model
108(3)
Behavior identification based on the fractal dimension and the Lyapunov exponents
111(1)
Summary
112(1)
Neuro-Fuzzy Approach For Adaptive Model-Based Control
113(14)
Modelling the Process of the Plant
114(2)
Neural Networks for Control
116(3)
Fuzzy Logic for Model Selection
119(5)
Neuro-Fuzzy Adaptive Model-Based Control
124(2)
Summary
126(1)
Advanced Applications of Automated Mathematical Modelling And Simulation
127(48)
Modelling and Simulation of Robotic Dynamic Systems
128(19)
Mathematical modelling of robotic systems
128(3)
Automated mathematical modelling of robotic dynamic systems
131(7)
Automated simulation of robotic dynamic systems
138(9)
Modelling and Simulation of Biochemical Reactors
147(12)
Modelling biochemical reactors in the food industry
147(4)
Automated mathematical modelling of biochemical reactors
151(1)
Simulation results for biochemical reactors
152(7)
Modelling and Simulation of International Trade Dynamics
159(6)
Mathematical modelling of international trade
159(3)
Simulation results of international trade
162(3)
Modelling and Simulation of Aircraft Dynamic Systems
165(9)
Mathematical modelling of aircraft systems
165(2)
Simulation results of aircraft systems
167(7)
Concluding Remarks and Future Directions
174(1)
Advanced Applications of Adaptive Model-Based Control
175(40)
Intelligent Control of Robotic Dynamic Systems
175(9)
Traditional model-based adaptive control of robotic systems
177(1)
Adaptive model-based control of robotic systems with a neuro-fuzzy approach
177(7)
Intelligent Control of Biochemical Reactors
184(18)
Fuzzy rule base for model selection
184(6)
Neural networks for identification and control
190(2)
Intelligent adaptive model-based control for biochemical reactors
192(10)
Intelligent Control of International Trade
202(6)
Adaptive model-based control of international trade
202(2)
Simulation results for control of international trade
204(4)
Intelligent Control of Aircraft Dynamic Systems
208(5)
Adaptive model-based control of aircraft systems
208(2)
Simulation results for control of aircraft systems
210(3)
Concluding Remarks and Future Directions
213(2)
References 215(10)
APPENDIX A PROTOTYPE INTELLIGENT SYSTEMS FOR AUTOMATED MATHEMATICAL MODELLING 225(10)
A.1 Automated Mathematical Modelling of Dynamical Systems
225(4)
A.2 Automated Mathematical Modelling of Robotic Dynamic Systems
229(6)
APPENDIX B PROTOTYPE INTELLIGENT SYSTEMS FOR AUTOMATED SIMULATION 235(7)
B.1 Automated Simulation of Non-Linear Dynamical Systems
235(4)
B.2 Numerical Simulation of Non-Linear Dynamical Systems
239(3)
APPENDIX C PROTOTYPE INTELLIGENT SYSTEMS FOR ADAPTIVE MODEL-BASED CONTROL 242(5)
C.1 Fuzzy Logic Model Selection
242(3)
C.2 Neural Networks for Identification and Control
245(2)
Index 247


Melin, Patricia; Castillo, Oscar